Marking Scheme Class X Session 2024-25 MATHEMATICS BASIC (Code No.241)

TIME: 3 hours MAX.MARKS: 80

Q. No.	Section A	Marks
1.	B) 90	1
2.	A) consistent with unique solution	1
3.	D) 7	1
4.	C) $2\sqrt{a^2+b^2}$	1
5.	D) 145°	1
6.	B) 15 cm	1
7.	A) ⁵ / ₄	1
8.	B) ΔEAD	1
9.	C) 3780	1
10.	B) 40	1
11.	D) 52°	1
12.	B) 5 cm	1
13.	A) cos 60°	1
14.	(C) $3\pi r^2$	1
15.	D) 4	1
16.	B) real and equal	1
17.	C) 30 - 40	1
18.	D) $25x^2 - 5x - 2$	1
19.	A) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)	1
20.	C) Assertion (A) is true but reason (R) is false.	1
	Section B	

21 (A).	$PA^{2} = PB^{2}$ $\Rightarrow (x-4)^{2} + (y-3)^{2} = (x-3)^{2} + (y-4)^{2}$ $\Rightarrow x = y \text{ or } x - y = 0$					1			
					OR				
21 (B).	AB = 6 cm	n = AC							1/2
	$OC = \sqrt{36}$ Point C is								1 ½
22.						(Correct fig	ure	1/2
	AM	B							1/
	AM = 4 cr	n							1/2
	$OM = \sqrt{OA}$		$\overline{M^2}$						
	$= \sqrt{5^2}$ $= 3 \text{ cr}$	-4^2							1
23 (A).	$\frac{\frac{12}{2}[2 \times 20 + 11d] = 900}{\Rightarrow d = 10}$ Also $a_{12} = 20 + 11 \times 10 = 130$					½ 1 ½			
					OR				
23 (B).	Putting $n = 1$, $S_1 = a = 6 - 1^2 = 5 \dots (i)$ Putting $n = 2$, $S_2 = 2a + d = 6 \times 2 - 2^2 = 8 \dots (ii)$ Solving (i) & (ii) $d = -2$					1/ ₂ 1 1/ ₂			
24.	$sin(A - B) = \frac{1}{2} \implies A - B = 30^{\circ}$ (i)						1/2		
	$cos(A + B) = \frac{1}{2} \implies A + B = 60^{\circ}$ (ii) Solving (i) & (ii) to get $A = 45^{\circ}$, $B = 15^{\circ}$					½ ½+½			
25.	Class	5-10	10-15	15-20	20-25	25-30	30-35		
	Frequency	5	6	15	10	5	4		
	Modal class is 15-20. $Mode = 15 + 5 \times (\frac{15-6}{2 \times 15-6-10})$ = 18.21(approx.)					½ 1 ½			
				Section	n-C				

26.	Let $\sqrt{5}$ be a rational number.	
	$\therefore \sqrt{5} = \frac{p}{q}$, where q≠0 and p & q are coprime.	1/2
	$5q^2 = p^2 \implies p^2$ is divisible by 5	
	⇒ p is divisible by 5 (i)	1
	⇒ p = 3a, where 'a' is a postive integer	
	$25a^2 = 5q^2 \Rightarrow q^2 = 5a^2 \Rightarrow q^2$ is divisible by 5	
	⇒ q is divisible by 5 (ii)	1
	(i) and (ii) leads to contradiction as 'p' and 'q' are coprime.	1/2
	$\therefore \sqrt{5}$ is an irrational number.	
27(A).	Let the required point on the y axis be P(0,y).	1/2
	Let AP : PB be k : 1 Therefore, $\frac{-k+4}{k+1} = 0$ $\Rightarrow k=4$ Therefore, required ratio is 4:1 & $y = \frac{8-5}{5} = \frac{3}{5}$ Hence point of intersection is $(0, \frac{3}{5})$.	1 ½ ½ ½ ½
	OR	
27 (B).	Let the line $4x + y = 4$ intersects AB at $P(x_1, y_1)$ such that AP: PB= k :1 $4x+y=4$ $A(-2,-1)$ $B(3,5)$	
	$x_1 = \frac{3k-2}{k+1}$ and $y_1 = \frac{5k-1}{k+1}$ (x_1, y_1) lies on $4x + y = 4$	1
	Therefore, $4(\frac{3k-2}{k+1})+(\frac{5k-1}{k+1})=4$	1/2
	$\Rightarrow k=1$	1
	Required ratio is 1:1	1/2

28.	LHS= $(\frac{1}{\sin A} - \sin A)(\frac{1}{\cos A} - \cos A)$ = $\frac{1-\sin^2 A}{\sin A} \times \frac{1-\cos^2 A}{\cos A}$ = $\frac{\cos^2 A}{\sin A} \times \frac{\sin^2 A}{\cos A}$ = $\cos A \sin A$ RHS = $\frac{\cos A \sin A}{\sin^2 A + \cos^2 A}$ = $\cos A \sin A$ = LHS				½ 1 1 ½ 1 1/2 1	
29.	Class 0-10	x 5	frequency(f)	$u = \frac{x - 25}{10}$ -2	fu -12	
	10-20	15	10	-1	-10	
	20-30	25	15	0	0	Correct
	30-40	35	9	1	9	table
	40-50	45	10	2	20	$1\frac{1}{2}$
			$\sum f = 50$		$\sum fu = 7$	
	Mean = 25 + 1 = 26.4	$10 \times (\frac{7}{50})$				1 ½
30 (A).	(i) $\triangle OAP \cong \triangle OBP$ $\angle APO = \angle BPO$					
	Or OP bisects $\angle P$ (ii) $\triangle AQP \cong \triangle BQP$					1
	$\Rightarrow AQ = QB \text{ and } \angle AQP = \angle BQP$ AB is a straight line					1
	therefore $\angle AQP = \angle BQP = 90^{\circ}$ Hence OP is right bisector of AB					1
	OR					
30 (B).	Correct Given, to prove, figure and construction Correct proof				1 2	

31.	Let the two-digit number be $10x + y$ Therefore $(10x + y) + (10y + x) = 99$ $\Rightarrow x + y = 9$ (i) Also, $x = 3 + y$ (ii) Solving (i) & (ii) to get $y = 3$, $x = 6$ Therefore, required number is 63	1/2 1/2 1/2 1/2 1/2 1/2 1/2
	Section D	
32 (A).	Let the number of books purchased be x	4
	Therefore, cost price of 1 book = $\frac{1920}{x}$	'
	Therefore $\frac{1920}{x} - \frac{1920}{x+4} = 24$ $\Rightarrow 1920 \times 4 = 24x(x+4)$	1
	or $x^2 + 4x - 320 = 0$	
	$\Rightarrow (x+20)(x-16) = 0$ $\Rightarrow x = 16, x \neq -20$	'
	Number of books bought=16	1
	Price of each book $=\frac{1920}{16} = ₹120$	1
	OR	
32 (B).	Let the initial average speed of the train be $x \text{ km/hr}$.	
	Therefore $\frac{132}{x} + \frac{140}{x+4} = 4$	1
	$\Rightarrow 4x^2 - 256x - 528 = 0$ or $x^2 - 64x - 132 = 0$	1
	$\Rightarrow (x - 66)(x + 2) = 0$	1
	$\Rightarrow x = 66, \ x \neq -2$ Initial average speed of train= 66 km/hr	1
		_
	Time taken to cover the distances separately= $\frac{132}{66}$ & $\frac{140}{70}$ i.e. 2 hours each	1
33.	Correct Given, to prove, Construction and figure Correct Proof	$\frac{1}{2} \times 4 = 2$
		3
34.	(i) Perimeter of sector = $2r + \frac{2\pi r\theta}{360} = 73.12$	
	$\Rightarrow 2(24) + \frac{2 \times 3.14 \times 24 \times \theta}{360} = 73.12$ $\Rightarrow \theta = 60^{\circ}$	1
	$\Rightarrow \theta = 60$ (ii)Area of minor segment = $\left(\frac{3.14 \times 24 \times 24 \times 60}{360} - \frac{1.73}{4} \times 24 \times 24\right) cm^2$	2
	$= (301.44 - 249.12) cm^2$	_
	$= 52.32 \ cm^2$	1

35 (A).	D 60° B 45° 9m A	1 mark for correct figure
	Let AB be the building and CD be the tower. Here $tan60^{\circ} = \sqrt{3} = \frac{h}{r}$	1 1
	$\Rightarrow h = x\sqrt{3}(i)$	1/2
	$tan45^{\circ} = \frac{9}{x} = 1$	1
	$\Rightarrow x = 9 \text{ m(ii)}$ (Distance between tower and building)	1/2
	Solving (i) & (ii) to get $h = 9 \times 1.732 = 15.588m$	1/2
	Therefore, the height of the tower = $h + 9 = 24.588 m$.	1/2
	OR	
35 (B).	Tom A B Tom A Tom B Tom Tom A Tom Tom Tom Tom Tom	1 mark for correct figure
	$tan30^{\circ} = \frac{1}{\sqrt{3}} = \frac{75}{x+y}$ $\Rightarrow x + y = 75\sqrt{3}$ (i)	1 1/2
	$tan45^{\circ}=1=\frac{75}{v}$	1
	$\Rightarrow y = 75(ii)$	1/2
	Solving (i) & (ii) to get $x = 75(\sqrt{3} - 1)$ $\Rightarrow x = 75 \times 0.732$	
	= 54.9 m Distance between the ships is $54.9 m$	1
	Section E	
36.	(i) Number of students who do not prefer to walk = $200 - 120 = 80$	1/2
	P (selected student doesn't prefer to walk) = $\frac{80}{200}$ or $\frac{2}{5}$	1/2

		ī
	(ii) Total number of students who prefer to walk or use bicycle = 120 + 50 = 170	1/2
	P (selected student prefers to walk or use bicycle) = $\frac{170}{200}$ or $\frac{17}{20}$	1/2
	(iii) (A) 50% of walking students who used bicycle = 60 Number of students who already use bicycle = 50	1/ ₂ 1/ ₂
	P (selected student uses bicycle) = $\frac{110}{200}$ or $\frac{11}{20}$	1
	(B) Number of students who preferred to be dropped by car $= 200 - (120 + 50 + 20)$ $= 10 \text{ students}$	1
	P (selected student is dropped by car) = $\frac{10}{200}$ or $\frac{1}{20}$	1
37.	(i) 1 and 4	1
	(ii) $x = 5/2$	1
	(iii) (A) At $x = 5/2$, $p(x) = 2.25$ Therefore, $h = 0.10 + 2.25 = 2.35m$	1 1
	OR $(B) -x^2 + 5x - 4 = 2$	1/2
	$x^{2} - 5x + 6 = 0$ (x - 2)(x - 3) = 0	1/2
	$\Rightarrow x = 2 \text{ and } x = 3$ Therefore, required points are (2,0) and (3,0)	1/ ₂ 1/ ₂
38.	(i) $l^2 = (1.2)^2 + (0.5)^2$	1/2
	$= 1.44 + 0.25 \Rightarrow l = \sqrt{1.69} = 1.3cm$	1/2
	(ii) Curved surface area of sharpened part	1/
	$= \pi \times 0.5 \times 1.3 = (0.65 \pi) cm^2$	1/ ₂ 1/ ₂
	(iii) (A) Total surface area of pencil = CSA of cylinder + CSA of cone + area of base circle	1/2
	$= \pi \times 0.5 \times 0.5 \times 21 + 0.65 \pi + \pi \times (0.5)^{2}$ $= (5.25 + 0.65 + 0.25)\pi$	1
	$= (6.15 \pi) cm^2$ OR	1/2
	(B) Length of cylindrical part of shortened pencil $= (21 - 8.2) cm = 12.8 cm$ So, volume of cylindrical part of shortened pencil	1/2
	$= \pi \times 0.5 \times 0.5 \times 12.8$ = (3.2 \pi) cm ³	1 ½