Sample Question Paper Class XII 044 Biology (2024-25)

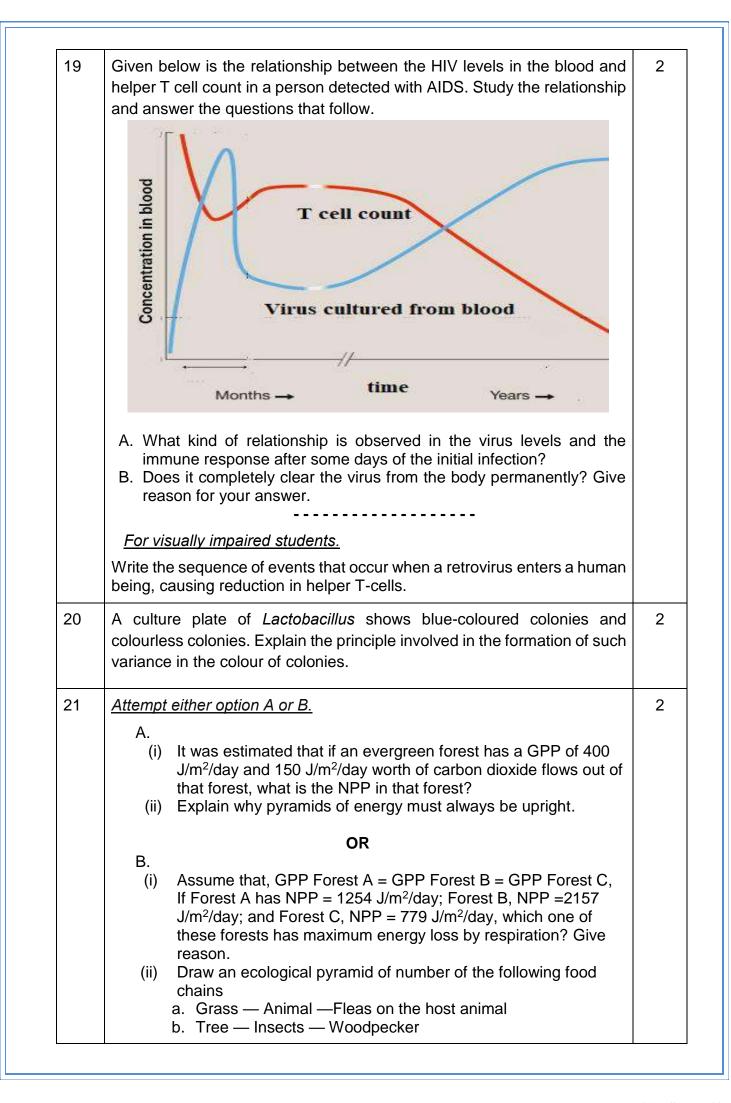
Maximum Marks: 70

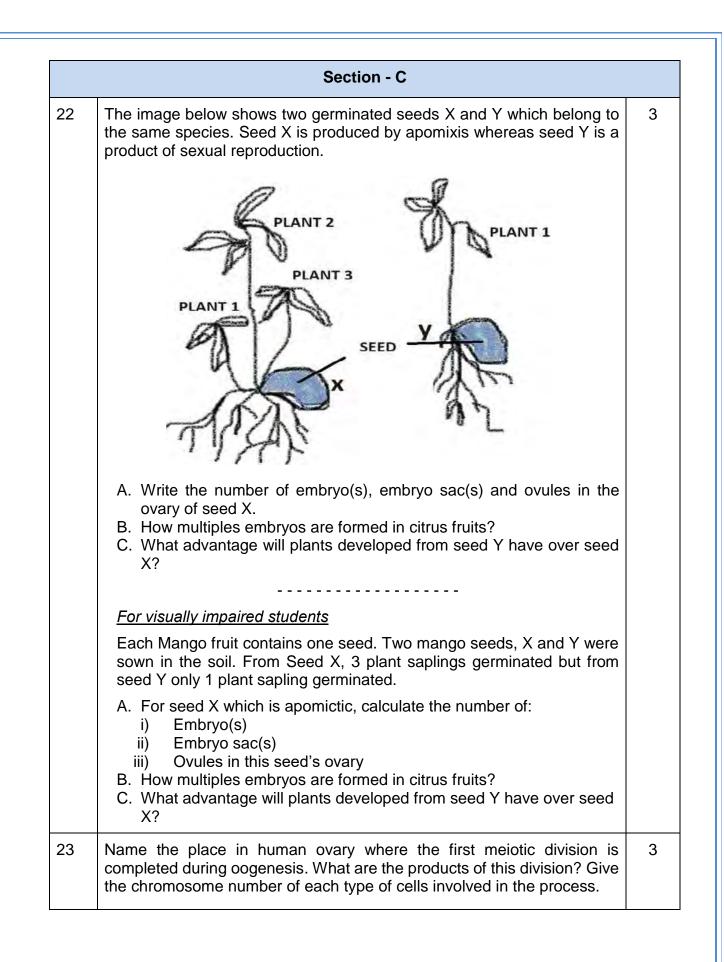
Time: 3 hours

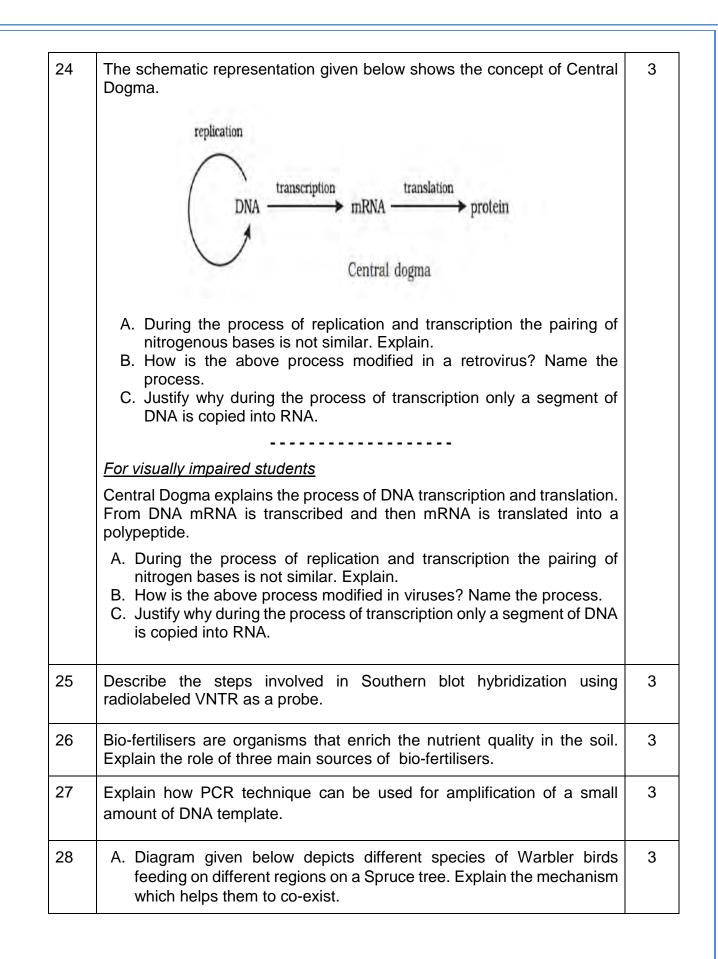
General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper has five sections and 33 questions.
- (iii) Section–A has 16 questions of 1 mark each; Section–B has 5 questions of 2 marks each; Section– C has 7 questions of 3 marks each; Section– D has 2 case-based questions of 4 marks each; and Section–E has 3 questions of 5 marks each.
- (iv) There is no overall choice. However, internal choices have been provided in some questions. A student has to attempt only one of the alternatives in such questions.
- (v) Wherever necessary, neat and properly labeled diagrams should be drawn.

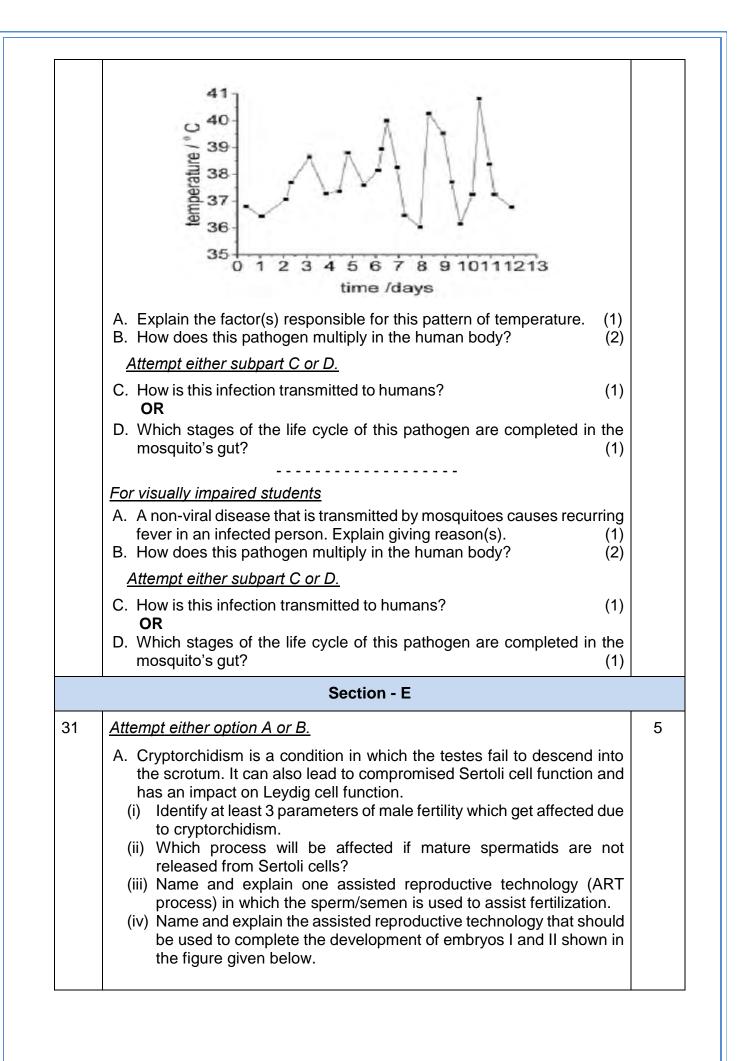
Section – A Q. No. 1 to 12 are multiple choice questions. Only one of the choices is correct. Select and write the correct choice as well as the answer to these questions.


Q. No	D								
1	Signals for parturition in human female originate from A. Fully developed foetus only B. Both placenta as well as fully developed foetus C. Placenta only D. Oxytocin released from maternal pituitary	1							
2	To produce 1600 seeds, the number of meiotic divisions required will be A. 2400 B. 2000 C. 1600 D. 1800	1							
3	A sample of normal double-stranded DNA was found to have thymine content of 27%. What will be the expected proportion of guanine in this strand? A. 23% B. 32% C. 36% D. 73%	1							


	Observe the schematic diagram that depicts a small section of nucleic acid. The bases in two strands are paired through hydrogen bonds that are shown by the dark lines. Identify the correct sequence of nucleotide in the 5'-3' direction.									
	А. В. С.	2000 bp/s 4000 bp/s 3000 bp/s	of polymerization is approximately							
5	A. B. C. D. Sures In Sur globin	2000 bp/s 4000 bp/s 3000 bp/s 1000 bp/s h and Rajesh have defective had esh, the problem is qualitative as molecules while in Rajesh the g very few globin molecules. Ide	emoglobin due to genetic disorders. s he is having incorrectly functioning e problem is quantitative as he is ntify the disorder they are suffering	1						
5	A. B. C. D. Sures In Sur globin having from.	2000 bp/s 4000 bp/s 3000 bp/s 1000 bp/s h and Rajesh have defective had esh, the problem is qualitative as molecules while in Rajesh the g very few globin molecules. Ide	emoglobin due to genetic disorders. s he is having incorrectly functioning e problem is quantitative as he is ntify the disorder they are suffering Rajesh	1						
5	A. B. C. D. Sures In Sur globin having	2000 bp/s 4000 bp/s 3000 bp/s 1000 bp/s h and Rajesh have defective had esh, the problem is qualitative as molecules while in Rajesh the g very few globin molecules. Ide	emoglobin due to genetic disorders. s he is having incorrectly functioning e problem is quantitative as he is ntify the disorder they are suffering	1						
5	A. B. C. D. Sures In Sur globin having from.	2000 bp/s 4000 bp/s 3000 bp/s 1000 bp/s h and Rajesh have defective had esh, the problem is qualitative as molecules while in Rajesh the g very few globin molecules. Ide Suresh Thalassemia - Autosomal	emoglobin due to genetic disorders. s he is having incorrectly functioning e problem is quantitative as he is ntify the disorder they are suffering Rajesh Sickle Cell Anaemia - Autosomal	1						
5	A. B. C. D. Sures In Sur globin having from.	2000 bp/s 4000 bp/s 3000 bp/s 1000 bp/s h and Rajesh have defective had esh, the problem is qualitative as molecules while in Rajesh the p very few globin molecules. Ide Suresh Thalassemia - Autosomal Dominant blood disorder Sickle Cell Anaemia - Autosomal linked Dominant	emoglobin due to genetic disorders. s he is having incorrectly functioning e problem is quantitative as he is ntify the disorder they are suffering Rajesh Sickle Cell Anaemia - Autosomal linked Recessive trait Thalassemia - Autosomal	1						


6	In <i>E.coli</i> , the lac operon gets switched on when lactose is	1
	A. present in the medium and it binds to the repressor.B. not present in the medium and the repressor binds to the operator.C. not present in the medium and RNA polymerase binds to the operator.D. Active lactose present in the medium binds to RNA polymerase.	
7	Which of the following features shows the mechanism of sex determination in honey-bee?	1
	 (i) An offspring formed from the union of a sperm and egg develops as a female. (ii) Males have half the number of chromosomes than that of female. (iii) The males are haploid having 32 chromosomes. (iv) All workers and males are diploid having 16 chromosomes A. (i) and (ii) B. (ii) and (iii) C. (i) and (iv) D. (ii) and (iv) 	
8	The following diagram shows a fragment of DNA which is going to be transcribed, the upper strand with polarity 3' to 5' is the template strand: 3' ATTGCC 5' 5' TAACGG 3'	1
	After transcription the mRNA can be represented by: A. 5' AUUGCC 3' B. 5' AUUGCC 3' C. 5' UAACGG 3' D. 5' GGCAAU 3'	
9	Idli – dosa dough rises due to production of which of the following gas? A. CO B. CO ₂ C. NO D. NO ₂	1
10	 Adaptive radiation leads to which of the following? A. Increased competition among species B. Decreased speciation rates C. Limited morphological diversity among species D. Rapid divergence of traits among populations inhabiting a given geographical area. 	1

11	of GAA sticky e	TTC is pr ends that	esent. The numb	per of nucleotides	nly when the sequence present in the resultant trands of DNA after this	1
			Vector DNA	Foreign DNA		
		Α.	1 & 5	5 &1		
		B.	2 & 4	4 &2		
		C.	2 & 5	5 & 2		
		D.	3 & 4	4 & 3		
12	in the e A. B. C.	effluent oc Reductior Increase Decrease	cur due to flocs? n in BOD in BOD	?	of the following change	1
these / E (e question A. Both B. Both C. A is tr	ns selecti A and R a	ng the appropria are true and R is are true and R is is false.	te option given be the correct expla not the correct ex	nation of A.	
13		. ,		have more than o sis without cytoki		1
14				side triphosphates eaders and provic	s serve dual purposes. le energy.	1
15	keeps o Reaso	on rising. n (R): Th			slurry in a biogas plant ne gas produced in the	1
16	the bas	sis of their	size.	an be isolated by nent size, the fas	Gel electrophoresis on ter it moves.	1
	-+ 		S	ection - B		
	Attemp	t either o	otion A or B.			2


		hCG	• :					OR										
	B. (i) The human male ejaculates about 200 to 300 million sperm																	
		durir sper	ng a	co low	itus	, ho	wev	er tl	he d	ovur	n is	fer	tilize	ed b	ру о	nly		
	(ii)	All c	opul	atio	n <mark>s</mark> v	vill r	not le	ead	to fe	ertiliz	atic	n. V	Vhy	?				
18	<u>Attempt e</u>	ther	opti	on A	l or	<u>B.</u>												2
	A. The	sche	mati	c re	pre	sent	atio	n giv	ven l	oelo	w sl	now	sal	DNA	A stra	and	and	
	two t	ypes	s of r	nuta	atior	ns in	the	DN	A st	ranc	l.							
	Original	Α	U	G	C	A	G	A	C	A	U	C	U	U	A	G]	
	template		Met			Gln			Thr			Ser	-		Stop)	1	
	10									1			÷.					
	Mutation I	A	U	G	A	A	G	A	C	A	U	C	U	U	A	G		
	Wutation	on I Met Lys Thr Ser Stop																
	(20.)		111	C	Δ	6		1	Δ	U	1	1.11	U	Δ.	G	-	7	
	Mutation II	A	U Met	G	A	G	A	C	A Hiş	U	C	ULeu	U	A	6	-	-	
	(i) Id					-2.75	tatic			itod	in I		п	-			-	
	(i) Identify the type of mutation exhibited in I and II.																	
	(ii) Which of the above mutation is more harmful? Give reason.																	
								OR										
	B. Given below is a schematic representation of a mRNA strand																	
	5'							mRI								3'		
	JJ																	
	A G	G /	۱G	Gι	JA	UG	ίΑl	JС	υc	G	U A	Α	A A	UA	A	4		
														., .	_			
															mR	NA.		
	(i) In the above sequence identify the translational unit in mRNA.(ii) Where are UTRs found and what is their significance?																	

	 Bay Breasted Warbler Feeds in the middle part of the tree Bay Breasted Warbler Feeds in the middle part of the tree Spruce tree Vellow-Rumped Warbler Feeds in the lower part of the tree and at the bases of the middle branches B. What does Gause's exclusion principle state? Does it apply in the case shown above? Explain. For visually impaired students A. Name and explain the mechanism where two species competing for the same resource co-exist. 	
	B. What does Gause's exclusion principle state? Does it apply in the above situation? Explain. Section - D	
29	Assuming that within a population of beetles where Hardy Weinberg conditions are met, the colour black (B) is dominant over the colour red (b). 40% of all beetles are red (bb).Given this information, answer the questions below: A. What is the frequency of red beetles?(1) B. Calculate is the percentage of beetles in the population that are heterozygous.(2)Attempt either subpart C or D. ORC. What is the frequency of homozygous dominant individuals?(1) ORD. Assuming that Hardy Wienberg conditions are met in the beetle population consisting of 1500 beetles. How many beetles would you expect to be black and red in colour respectively?(1)	4
30	Given below is the pattern of temperature in a person suffering from a non-viral disease transmitted by mosquitoes. Study the graph and answer the questions that follow:	4

	Embryo I Embryo II	
	 <u>For visually impaired students</u> (iv) An infertile couple decided to use ART to conceive. After IVF they decided for Embryo transfer of the following 2 embryos. Embryo 1 consisted of 8 blastomeres and Embryo 2 consisted of 16 	
	blastomeres. Name and explain the techniques they should deploy to complete further development of the given embryos. OR	
	 B. (i) Explain the significance of each of the following features present in plants given below: a) In rose-bay plant the stamens ripen before the stigma. b) In certain species of primrose, the flowers have short stamen and long style. c) The bisexual flower of mustard exhibits rejection of self-pollen grain. (ii) Explain how autogamy is prevented in castor and papaya plant respectively. 	
32	Attempt either option A or B.	5
	 A. Explain how advent of biotechnology has helped in preventing infestation by nematodes and thereby increasing crop yield. OR B. In the future, genetic therapies may be used to prevent, treat, or cure certain inherited disorders in humans. Justify the statement with a suitable example. 	
33	 <u>Attempt either option A or B.</u> A. (i) Why is there a need to conserve biodiversity? (Any two reasons) (ii) Name and explain any two causes that are responsible for the loss of biodiversity. 	5
	OR B. (i) Name the two types of desirable approaches to conserve biodiversity? Explain with examples bringing out the difference between the two types. (ii) State the features of a stable biological community?	