# PM SHRI KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32 PRACTICE PAPER 1 (2023-24)

## Mensuration, Exponents & Powers, Direct and Inverse Proportion (ANSWERS)

| SUBJECT: MATHEMATICS | MAX. MARKS: 40   |
|----------------------|------------------|
| CLASS : VIII         | DURATION : 1½ hr |

| $C_{4}$ | mai | ral      | In | str | 1161 | in | nc. |
|---------|-----|----------|----|-----|------|----|-----|
| t Tt    |     | <b>и</b> |    |     | 114. |    | 115 |

- (i). All questions are compulsory.
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.

| (iii | each which contains                                                                                                                 | 4 MCQs. Section C                         | comprises of 3 question                                          | omprises of 1 CCT question ons of 2 marks each. Section estions of 4 marks each. |             |  |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------|--|
|      | of 4 questions of 3 in                                                                                                              |                                           | SECTION – A                                                      | lestions of 4 marks each.                                                        |             |  |
|      |                                                                                                                                     |                                           | <u> </u>                                                         | each.                                                                            |             |  |
|      |                                                                                                                                     | Questions                                 | or to o carry r mark                                             | · cucii.                                                                         |             |  |
| 1.   | A person has money to buy 25 cycles worth Rs 500 each. How many cycles he will be able to buy if each cycle is costing Rs 125 more? |                                           |                                                                  |                                                                                  |             |  |
|      | (a) 20<br>Ans: (a) 20                                                                                                               | (b) 30                                    | (c) 25                                                           | (d) 30                                                                           |             |  |
|      | Let x be the number Cost of a cycle (in R                                                                                           | s): 500                                   | 625                                                              | s 125 more.                                                                      |             |  |
|      | Number of cycles:<br>It is in inverse variat<br>$\Rightarrow x = 500 \times 256 / 25$                                               | ion. Therefore, w                         | x e get:500 × 25 = 625                                           | $\times$ $\mathbf{x}$                                                            |             |  |
|      | ∴ The required numb                                                                                                                 | per of cycles is 20                       |                                                                  |                                                                                  |             |  |
| 2.   | 100 persons had food for                                                                                                            | d provision for 24                        | days. If 20 persons                                              | eft the place, the provision                                                     | n will last |  |
|      | (a) 30 days<br>Ans: (a) 30 days                                                                                                     | •                                         | (c) 120 days                                                     | (d) 40 days                                                                      |             |  |
|      | 100 persons have for<br>1 person will have for<br>If 20 persons left the<br>Hence, 80 persons have                                  | ood provision for place, then the to      | $= 24 \times 100 = 2500 \text{ day}$<br>stal left = $100-20 = 8$ | 0 persons                                                                        |             |  |
| 3.   | For a non-zero ration                                                                                                               |                                           | $a^{12}$ is equal to                                             |                                                                                  |             |  |
|      | (a) $a^5$ Ans: (c) $a^{-5}$                                                                                                         | (b) $a^{-19}$                             | (c) $a^{-5}$                                                     | (d) $a^{19}$                                                                     |             |  |
| 4.   | Cube of -1/2 is<br>(a) 1/8<br>Ans: (c) -1/8                                                                                         | (b) 1/16                                  | (c) -1/8                                                         | (d) -1/16                                                                        |             |  |
| 5.   | The dimensions of a of dimensions 2 m ×                                                                                             | $1.25 \text{ m} \times 1 \text{ m}$ , the |                                                                  | t is filled with cuboidal bo                                                     | xes, each   |  |
|      | (a) 1800<br>Ans: (c) 4000<br>Given that, the dimen                                                                                  | (b) 2000 nsions of the gode               | (c) 4000<br>own are 40 m, 25 m a                                 | (d) 8000<br>and 10 m                                                             |             |  |

Volume =  $40 \text{ m} \times 25 \text{ m} \times 10 \text{ m} = 10000 \text{ m}^3$ 

Given that the volume of each cuboidal box is  $2 \text{ m} \times 1.25 \text{ m} \times 1 \text{ m} = 2.5 \text{ m}^3$ 

https://www.evidyarthi.in/

Hence, the total number of boxes to be filled in the godown = 10000/2.5 = 4000

**6.** A cube of side 4 cm is cut into 1 cm cubes. What is the ratio of the surface areas of the original cubes and cut-out cubes?

(a) 1:2

(b) 1:3

(c) 1:4

(d) 1 : 6

Ans: (c) 1: 4

Given: The cube side is 4cm

The side of cube 4cm is cut into small cubes, in which each of 1 cm

Therefore, the total number of cubes =  $4 \times 16 = 64$  cubes

Thus, the number of cut-out cubes = 64/1

Now, the surface area of the cut-out cubes =  $c \times 1 \text{ cm}^2$ 

The surface area of the original cube =  $6 \times 4^2$ 

Hence, the required ratio obtained =  $6 \times 4^2 / = 64 \times 6 = 1:4$ 

### **SECTION – B(CCT Questions)**

Questions 7 to 10 carry 1 mark each.

#### **CCT Question**

Shanti Sweets and Snacks Stall was placing an order for making cardboard boxes for packing their sweets. Two sizes of boxes were required. The bigger of dimensions 25 cm × 20 cm × 5 cm and the smaller of dimensions 15 cm × 12 cm × 5 cm. For all the overlaps, 5% of the total surface area is required extra. The cost of the cardboard is Rs 4 for 1000 cm<sup>2</sup>.



# Based on the above situation, answer the following questions:

7. Find the total surface area of bigger box

(a)  $630 \text{ cm}^2$ 

(b)  $1480 \text{ cm}^2$ 

(c)  $1460 \text{ cm}^2$ 

(d)  $1450 \text{ cm}^2$ 

Ans: (d) 1450 cm<sup>2</sup>

Total surface area of bigger box = 2(lb+lh+bh)

 $= [2(25\times20+25\times5+20\times5)] = [2(500+125+100)] = 1450 \text{ cm}^2$ 

**8.** Find the total surface area of smaller box

(a)  $630 \text{ cm}^2$ 

(b)  $1480 \text{ cm}^2$ 

(c)  $1460 \text{ cm}^2$ 

(d)  $1450 \text{ cm}^2$ 

Ans: (a) 630 cm<sup>2</sup>

Total surface area of the smaller box =  $[2(15 \times 12 + 15 \times 5 + 12 \times 5)]$  cm<sup>2</sup>

= [2(180+75+60)] cm<sup>2</sup> =  $(2\times315)$  cm<sup>2</sup> = 630 cm<sup>2</sup>

9. Find the total cardboard sheet required for both 250 boxes considering all overlaps.

(a)  $546000 \text{ cm}^2$ 

(b)  $165375 \text{ cm}^2$  (c)  $546200 \text{ cm}^2$ 

(d)  $165475 \text{ cm}^2$ 

Ans: (a) 546000 cm<sup>2</sup>

Extra area required for overlapping bigger box =  $1450 \times 5/100 \text{ cm}^2 = 72.5 \text{ cm}^2$ 

Extra area required for overlapping smaller box =  $630 \times 5/100 \text{ cm}^2 = 31.5 \text{ cm}^2$ 

While considering all overlaps, the total surface area of the bigger box.

$$= (1450+72.5) \text{ cm}^2 = 1522.5 \text{ cm}^2$$

Area of cardboard sheet required for 250 such bigger boxes

$$= (1522.5 \times 250) \text{ cm}^2 = 380625 \text{ cm}^2$$

The total surface area of 1 smaller box while considering all overlaps

$$= (630+31.5) \text{ cm}^2 = 661.5 \text{ cm}^2$$

Area of cardboard sheet required for 250 smaller boxes =  $(250 \times 661.5)$  cm<sup>2</sup> = 165375 cm<sup>2</sup>

Now, total cardboard sheet required = (380625+165375) cm<sup>2</sup> = 546000 cm<sup>2</sup>

10. Find the cost of cardboard required for supplying 250 boxes of each kind

(a) Rs. 2584

- (b) Rs. 2168
- (c) Rs. 2192
- (d) none of these

Ans: (d) none of these

Cost of  $1000 \text{ cm}^2$  cardboard sheet = Rs. 4

Therefore, the cost of  $546000 \text{ cm}^2$  cardboard sheet =Rs.  $(546000 \times 4)/1000 = \text{Rs. } 2184$ 

Therefore, the cost of cardboard required for supplying 250 boxes of each kind will be Rs. 2,184.

## SECTION – C

Questions 11 to 13 carry 2 marks each.

11. The radii of two cylinders are in the ratio 2: 3 and their heights are in the ratio 5: 3. Calculate the ratio of their curved surface areas.

Ans: Let the radii of two cylinders be 2r and 3r, respectively, and their heights be 5h and 3h, respectively.

Let  $S_1$  and  $S_2$  be the curved surface areas of the two cylinder.

 $S_1$  = Curved surface area of the cylinder of height 5h and radius 2r

$$S_2$$
 = Curved surface area of the cylinder of height 3h and radius 3r  

$$\therefore S_1 : S_2 = 2 \times \pi \times r \times h : 2 \times \pi \times r \times h = \frac{2 \times \pi \times 2r \times 5h}{2 \times \pi \times 3r \times 3h} = 10:9$$

12. The curved surface area of a cylinder is 1320 cm<sup>2</sup> and its base has diameter 21 cm. Find the height of the cylinder.

Ans: Let h be the height of the cylinder.

Given, Curved surface area,  $S = 1320 \text{ cm}^2$ 

Diameter,  $d = 21 \text{ cm} \Rightarrow \text{Radius}, r = 10.5$ 

$$\therefore S = 2\pi rh \Rightarrow 1320 = 2\pi \times 10.5 \times h \Rightarrow h = \frac{1320}{2\pi \times 10.5}$$

 $\Rightarrow$  h = 20 cm

**13.** Express each of the following rational numbers with a positive exponent:

(i) 
$$\left\{ \left( \frac{3}{2} \right)^4 \right\}^{-2}$$
 (ii)  $4^3 \times 4^{-9}$ 

Ans: (i) (i) 
$$\left\{ \left( \frac{3}{2} \right)^4 \right\}^{-2} = \left( \frac{3}{2} \right)^{4 \times -2} = \left( \frac{3}{2} \right)^{-8} = \left( \frac{2}{3} \right)^8$$

$$(ii)4^3 \times 4^{-9} = 4^{(3-9)} = 4^{-6} = \left(\frac{1}{4}\right)^6$$

## SECTION – D

#### Questions 14 to 17 carry 3 marks each.

**14.** The sum of the radius of the base and height of a solid cylinder is 37 m. If the total surface area of the solid cylinder is 1628 m<sup>2</sup>, find the circumference of its base.

Ans: Let r and h be the radius and height of the solid cylinder.

Given, 
$$r + h = 37 \text{ m}$$

Total surface area,  $S = 2\pi r(r + h)$ 

$$\Rightarrow 1628 = 2\pi \times r \times 37$$

$$\Rightarrow \mathbf{r} = \frac{1628}{2\pi \times 37} = \frac{1628 \times 7}{2 \times 22 \times 37} = 7 \text{ m}$$

Circumference of its base =  $2\pi r = 2 \times \frac{22}{7} \times 7 = 44 \text{ m}$ 

**15.** Simplify: 
$$\left\{ \left( \frac{2}{3} \right)^2 \right\}^3 \times \left( \frac{1}{3} \right)^{-4} \times 3^{-1} \times 6^{-1}$$

$$\left(\left(\frac{2}{3}\right)^2\right)^3 \times \left(\frac{1}{3}\right)^{-4} \times 3^{-1} \times 6^{-1} = \left(\frac{2^2}{3^2}\right)^3 \times \frac{1}{(1/3)^4} \times \frac{1}{3} \times \frac{1}{6}$$
--->  $((a/b)^n = a^n/(b^n))$  and  $(a^{-n} = 1/(a^n))$ 

$$= \left(\frac{4}{9}\right)^3 \times \frac{1}{(1/81)} \times \frac{1}{3} \times \frac{1}{6} = \frac{4^3}{9^3} \times 81 \times \frac{1}{18} \quad ---> ((a/b)^n = a^n/(b^n))$$

$$= \frac{64}{729} \times 81 \times \frac{1}{18} = \frac{64}{9} \times \frac{1}{18} = 64 \times \frac{1}{162} = \frac{64}{162} = \frac{32}{81}$$

**16.** If a and b vary inversely to each other, then find the values of p, q, r

| а | 6  | 8 | q  | 25 |
|---|----|---|----|----|
| b | 18 | p | 39 | r  |

Ans: Given that a and b vary inversely to each other.

$$\Rightarrow$$
 ab = k (constant)

| а | 6  | 8 | q  | 25 |
|---|----|---|----|----|
| b | 18 | p | 39 | r  |

If 
$$a = 6$$
 and  $b = 18$ , then

When 
$$a = 8$$
,  $b = p \implies k = ab = 6 \times 18 = 108$ 

When 
$$a = q, b = 39$$

$$\therefore k = ab \Rightarrow 108 = 8 \times p \Rightarrow p = \frac{27}{2}$$

When 
$$a = 25$$
,  $b = r$ 

$$\therefore k = ab \Rightarrow 108 = 25 \times r \Rightarrow r = \frac{108}{25}$$

17. A car can finish a certain journey in 10 hours at the speed of 48 km/hr. By how much should its speed be increased so that it may take only 8 hours to cover the same distance?

Ans: Let the increased speed be x km/h.

$$48 x+48$$

Since speed and time taken are in inverse variation, we get:  $10 \times 48 = 8(x + 48)$ 

$$\Rightarrow 480 = 8x + 384 \Rightarrow 8x = 480 - 384 \Rightarrow 8x = 96 \Rightarrow x = 12$$

Thus, the speed should be increased by 12km/h.

 $\frac{SECTION-E}{\text{Questions 18 to 20 carry 4 marks each.}}$ 

- 18. (a) In a hostel of 50 girls, there are food provisions for 40 days. If 30 more girls join the hostel, how long will these provisions last?
  - (b) If 12 pumps can empty a reservoir in 20 hours, then find the time required by 45 such pumps to empty the same reservoir.

Ans: (a) Let x be the number of days with food provisions for 80 (i.e., 50+30) girls.

Number of girls: 50 80

Number of days: 40

Since the number of girls and the number of days with food provisions are in inverse variation,

we have: 
$$50 \times 40 = 80x \implies x = \frac{50 \times 40}{80} = \frac{2000}{80} = 25$$

Thus, the required number of days is 25.

(b) Time taken by 12 pumps to empty a reservoir = 20 hr

Time taken by 1 pump to empty the reservoir =  $20 \times 12 = 240 \text{ hr}$ 

Hence, time taken by 45 pumps to empty the reservoir =  $240/45 = (240 \times 60)/45$ 

 $= 14400/45 = 320 \text{ min} = 5 \times 69 + 20 \text{ min} = 5 \text{ hours } 20 \text{ min}$ 

19. How many planks each of which is 3 m long, 15 cm broad and 5 cm thick can be prepared from a wooden block 6 m long, 75 cm broad and 45 cm thick?

Ans: Length of the wooden block =  $6 \text{ m} = 6 \times 100 \text{ cm} = 600 \text{ cm}$  (: 1 m= 100 cm)

Breadth of the block = 75 cm

Height of the block = 45 cm

Volume of block = length  $\times$  breadth  $\times$  height =  $600 \times 75 \times 45 = 2025000$  cm<sup>3</sup>

Again, it is given that the length of a plank =  $3 \text{ m} = 3 \times 100 \text{ cm} = 300 \text{ cm}$  (: 1 m = 100 cm)

Breadth = 15 cm, Height = 5 cm

Volume of the plank = length  $\times$  breadth  $\times$  height =  $300 \times 15 \times 5 = 22500$  cm<sup>3</sup>

: The number of such planks = volume of the wooden block / voume of a plank

 $= 2025000 \text{ cm}^3 / 22500 \text{ cm}^3 = 90$ 

**20.** Write the following numbers in the usual form:

(i) 
$$4.83 \times 10^7$$
 (ii)  $3.02 \times 10^{-6}$ 

(iii) 
$$4.5 \times 10^4$$

(iii) 
$$4.5 \times 10^4$$
 (iv)  $3 \times 10^{-8}$ 

Ans: (i)  $4.83 \times 10^7 = 4,83,00,000$ 

(ii) 
$$3.02 \times 10^{-6} = 0.00000302$$

(iii) 
$$4.5 \times 10^4 = 45,000$$

(iv) 
$$3 \times 10^{-8} = 0.000000003$$