PM SHRI KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32 PRACTICE PAPER (2023-24)

CHAPTER 09 STRAIGHT LINES (ANSWERS)

SUBJECT: MATHEMATICS MAX. MARKS: 40 CLASS: XI DURATION: 1½ hrs

General Instructions:

- All questions are compulsory. (i).
- (ii). This question paper contains 20 questions divided into five Sections A, B, C, D and E.
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

<u>SECTION - A</u> Questions 1 to 10 carry 1 mark each.

1. The equation of line whose intercepts on the axes of x and y are -2 and 3 respectively is

(a)
$$3x - 2y = 6$$
 (b) $3x - 2y + 6 = 0$

(c)
$$3x + 2y = 6$$
 (d) $3x + 2y = -6$

Ans: (b)
$$3x - 2y + 6 = 0$$

$$a = intercepts on x-axis = -2$$

$$b = intercepts on y-axis = 3$$

$$\Rightarrow$$
 equation of line is $\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow \frac{x}{-2} + \frac{y}{3} = 1$

$$\Rightarrow$$
 3x - 2y = -6

2. The new coordinates of point (3, -5), if origin is shifted to the point (-3, -2) are

(a)
$$(6, 3)$$
 (b) $(6, -3)$ (c) $(-6, 3)$ (d) $(-6, -3)$

Ans: (b)
$$(6, -3)$$

coordinates of new origin are
$$h = -3$$
 and $k = -2$ whereas $x = 3$ and $y = -5$

New coordinates of point be X = x - h

$$=3-(-3)=6$$

$$Y = y - k$$

$$=-5-(-2)=-5+2=-3$$

new coordinates of point are (6, -3)

3. The angle between the X -axis and the line joining the points (3, -1) and (4, -2) is (a) 45° (b) 135° (c) 90° (d) 180°

Slope of line
$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 + 1}{4 - 3}$$

$$\tan \theta = \frac{-1}{1} \implies \tan \theta = -1$$

$$\Rightarrow \tan \theta = -\tan 45^{\circ}$$
 (:: 1 = tan 45°)

$$(:: 1 = \tan 45^\circ)$$

$$\Rightarrow$$
 tan θ = tan $(180^{\circ} - 45^{\circ})$ [: tan $(180^{\circ} - \theta) = -$ tan θ]

$$\therefore \tan (180^{\circ} - \theta) = -\tan \theta$$

- $\Rightarrow \tan \theta = \tan 135^{\circ} \Rightarrow \theta = 135^{\circ}$
- **4.** The value of y will be, so that the line through (3, y) and (2, 7) is parallel to the line through (-1, 4)and (0, 6).

Ans: Let
$$A(3, y)$$
, $B(2, 7)$, $C(-1, 4)$ and $D(0, 6)$ be the given points.

Then, m_1 = Slope of the line AB = $\frac{7-y}{2-3}$ = y-7

and
$$m_2$$
 = Slope of the line $CD = \frac{6-4}{0-(-1)} = 2$

Since, AB and CD are parallel.

$$\therefore \mathbf{m}_1 = \mathbf{m}_2 \Rightarrow \mathbf{y} - 7 = 2 \Rightarrow \mathbf{y} = 9$$

5. The equation of the line passing through the point (1, 2) and perpendicular to the line x + y + 1 = 0 is (a) y - x + 1 = 0 (b) y - x - 1 = 0 (c) y - x + 2 = 0 (d) y - x - 2 = 0

Ans: Given point is (1, 2) and slope of the required line is 1.

$$x + y + 1 = 0 \Rightarrow y = -x - 1 \Rightarrow m1 = -1$$

- \therefore Slope of the line = -1/-1 = 1
- \therefore Equation of required line is y 2 = 1 (x -1)
- \Rightarrow y 2 = x -1 \Rightarrow y x -1 = 0
- 6. The equation of line, which passes through point (4, 3) and parallel to the line 2x 3y = 7 is

(a)
$$2x - 3y + 1 = 0$$
 (b) $2x - 3y - 1 = 0$ (c) $2x + 3y + 1 = 0$ (d) $2x + 3y - 1 = 0$

Ans: (a)
$$2x - 3y + 1 = 0$$

Let the equation of line parallel to the given line is

$$2x - 3y = \lambda$$
 ...(i) [: In two parallel lines,m1 m2 =]

Since, the line (i), passes through the point (4, 3).

So, this point will satisfy the equation of line.

$$\therefore 2 \times 4 - 3 \times 3 = \lambda$$

$$\Rightarrow 8 - 9 = \lambda \Rightarrow \lambda = -1$$

Put the value of 1 in Eq. (i), we get
$$2x - 3y = -1$$

$$\Rightarrow 2x - 3y + 1 = 0$$

which is the required equation of line.

7. The distance of the point (3, -5) from the line 3x - 4y - 26 = 0 is

Ans: (d) 3/5

Given line is
$$3x - 4y - 26 = 0$$
 ...(i)

On comparing Eq. (i) with general equation of line Ax + By + C = 0, we get

$$A = 3$$
, $B = -4$ and $C = -26$

Given point is
$$(x1, y1) = (3, -5)$$
.

The distance of the given point from given line is

$$d = \left| \frac{Ax_1 + By_1 + C}{\sqrt{A^2 + B^2}} \right| \Rightarrow d = \left| \frac{3 \times 3 + (-4) \times (-5) - 26}{\sqrt{3^2 + (-4)^2}} \right| = \frac{3}{5}$$

8. The distance between the parallel lines 3x - 4y + 7 = 0 and 3x - 4y + 5 = 0, is

Ans: (b) 2/5

Here,
$$A = 3$$
, $B = -4$, $C_1 = 7$, and $C_2 = 5$.

Therefore, the required distance is
$$d = \left| \frac{7-5}{\sqrt{3^2 + (-4)^2}} \right| = \frac{2}{5}$$

For Q9 and Q10, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true but R is not the correct explanation of A.
- (c) A is true but R is false.

9. Assertion (A): Slope of line 3x - 4y + 10 = 0 is 3/4.

Reason (R): x-intercept and y-intercept of 3x - 4y + 10 = 0 respectively are -10/3 and 5/2.

Ans: (b) Both A and R are true but R is not the correct explanation of A.

Assertion: Given equation 3x - 4y + 10 = 0

can be written as
$$y = \frac{3}{4}x + \frac{5}{2}$$
 ...(i)

Comparing Eq. (i) with y = mx + c, we have

slope of the given line as m = 3/4.

Reason: Equation 3x - 4y + 10 = 0 can be written as

$$3x - 4y = -10 \Rightarrow \frac{x}{-\frac{10}{3}} + \frac{y}{\frac{5}{2}} = 1$$
 ...(ii)

Comparing Eq. (ii) with $\frac{x}{a} + \frac{y}{b} = 1$, we have

x-intercept as a = -10/3

and y-intercept as b = 5/2.

Hence, Assertion and Reason both are true and Reason is not the correct explanation of Assertion.

10. Assertion (A): The slope of the line x + 7y = 0 is 1/7 and y-intercept is 0.

Reason (R): The slope of the line 6x + 3y - 5 = 0 is -2 and y-intercept is 5/3.

Ans: (d) A is false but R is true.

Assertion: Given equation is x + 7y = 0

$$\Rightarrow y = -\frac{x}{7} + 0$$

On comparing with y = mx + c, we get

Slope (m) = -1/7, y-intercept = 0

Reason: Given equation is 6x + 3y - 5 = 0

$$\Rightarrow y = -2x + \frac{5}{3}$$

On comparing with y = mx + c, we get

Slope (m) = -2, y-intercept = 5/3

Hence, Assertion is false and Reason is true.

 $\frac{SECTION - B}{\text{Questions 11 to 14 carry 2 marks each.}}$

11. Line through the points (-2, 6) and (4, 8) is perpendicular to the line through the points (8, 12) and (x, 8)24), find the value of x.

Ans:

As two lines are perpendicular

 \therefore product of the slopes of two lines is -1

$$\Rightarrow \frac{8-6}{4+2} \times \frac{24-12}{x-8} = -1$$

$$\Rightarrow \frac{2}{6} \times \frac{12}{x-8} = -1 \Rightarrow 4 = 8 - x \Rightarrow x = 4$$

12. Find the equation of the straight line passing through the point (6, 2) and having slope -3.

Ans: Given, A straight line passing through the point (6, 2) and the slope is -3

By using the formula, the equation of line is $[y - y_1 = m(x - x_1)]$

Here, the line passes through (6, 2). It is given that the slope of the line, m = -3

Now, substitute the values, and we get y - 2 = -3(x - 6)

$$\Rightarrow y - 2 = -3x + 18 \Rightarrow y + 3x - 20 = 0$$

- \therefore The equation of line is 3x + y 20 = 0
- 13. If the lines 2x + y 3 = 0, 5x + ky 3 = 0 and 3x y 2 = 0 are concurrent, find the value of k.

Ans: Here given lines are

$$2x + y - 3 = 0 ...(i)$$

$$5x + ky - 3 = 0 \qquad \dots (ii)$$

$$3x - y - 2 = 0 \qquad \dots(iii)$$

Solving (i) and (iii), we get, x = 1, y = 1

Therefore, the point of intersection of two (i) and (iii) lines is (1, 1). Since above three lines are concurrent, the point (1, 1) will satisfy equation (ii)

i.e.,
$$5.1 + k.1 - 3 = 0$$
 or $k = -2$.

14. Find the equation of lines passing through (1, 2) and making angle 30° with y-axis.

Ans: Slope of line =
$$\tan (90^{\circ} - 30^{\circ}) = \sqrt{3}$$

$$\therefore$$
 Equation of line is $y-2=\sqrt{3}$ $(x-1)$

$$\Rightarrow \sqrt{3}x - y + (2 - \sqrt{3}) = 0.$$

 $\frac{SECTION - C}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. Find the equations of the altitudes of the triangle whose vertices are A(7, -1), B(-2, 8) and C(1, 2). Ans: Let AD, BE and CF be three altitudes of triangle ABC.

Let m_1 , m_2 and m_3 be the slopes of AD, BE and CF respectively. Then

 $AD \perp BC \Rightarrow Slope \text{ of } AD \times Slope \text{ of } BC = -1$

$$\Rightarrow m_1 \times \left(\frac{2-8}{1+2}\right) = -1 \Rightarrow m_2 = \frac{1}{2}$$

BE \perp AC \Rightarrow Slope of BE \times Slope of AC = -1

$$\Rightarrow m_2 \times \left(\frac{-1-2}{7-1}\right) = -1 \Rightarrow m_2 = 2$$

and CF \perp AB \Rightarrow Slope of CF \times Slope of AB = -1

$$\Rightarrow m_3 \times \left(\frac{-1-8}{7+2}\right) = -1 \Rightarrow m_3 = 1$$

Since AD passes through A(7, – 1) and has slope $m_1 = \frac{1}{2}$. So its equation is

$$y + 1 = \frac{1}{2} (x - 7) \Rightarrow x - 2y - 9 = 0$$

Similarly equation of BE is $(y - 8) = 2(x + 2) \Rightarrow 2x - y + 12 = 0$

Equation of CF is y - 2 = 1 $(x - 1) \Rightarrow x - y + 1 = 0$

16. If P (a, b) is the mid-point of a line segment between axes. Show that equation of the line is $\frac{x}{a} + \frac{y}{b} = \frac{a}{a}$

2.

Ans:

Let line be
$$\frac{x}{p} + \frac{y}{q} = 1$$

...(î)

Then coordinates of A and B are (p, 0) and (0, q)

$$\therefore \frac{p+0}{2} = a \text{ and } \frac{0+q}{2} = b$$

$$\Rightarrow p = 2a \text{ and } q = 2b$$

Substituting in (i), we get

$$\frac{x}{2a} + \frac{y}{2b} = 1$$

$$\Rightarrow \frac{x}{a} + \frac{y}{b} = 2$$
 is the required equation.

17. The vertices of the triangle are A(2, 3), B(4, -1) and C(1, 2). Find the length and equation of the perpendicular drawn from the point A on side BC.

Ans: Vertices of a triangle are A(2, 3), B(4, -1) and C(1, 2).

Equation of BC is

$$y+1 = \frac{2+1}{1-4} (x-4) \Rightarrow x+y-3 = 0$$
 ...(i)

Length of AD =
$$\left| \frac{2+3-3}{\sqrt{1+1}} \right| = \left| \frac{2}{\sqrt{2}} \right| = \sqrt{2}$$

Slope of BC =
$$-1$$

As AD is perpendicular to BC

- \therefore Slope of AD = 1
- \therefore Equation of AD is, y 3 = 1(x 2)
- \Rightarrow $y 3 = x 2 \Rightarrow x y + 1 = 0$

<u>SECTION – D</u> Questions 18 carry 5 marks.

18. Find the equations of the lines which pass through the point (4, 5) and make equal angles with the lines 5x - 12y + 6 = 0 and 3x = 4y + 7.

Ans: Equations of a line through (4, 5) is

$$y - 5 = m(x - 4)$$

Line (i) makes equal angles with the lines

$$5x - 12y + 6 = 0$$
 and $3x - 4y - 7 = 0$

$$\left| \frac{m - \frac{5}{12}}{1 + \frac{5}{12}m} \right| = \left| \frac{m - \frac{3}{4}}{1 + \frac{3}{4}m} \right| \Rightarrow \frac{12m - 5}{12 + 5m} = \pm \frac{4m - 3}{4 + 3m} \qquad \dots(ii)$$

Consider + sign from (ii), we get

$$48m - 20 + 36m^2 - 15m = 48m - 36 + 20m^2 - 15m$$

$$\Rightarrow 16m^2 = -16 \Rightarrow m^2 = -1$$
, not possible.

Consider - sign from (ii), we get

$$48m - 20 + 36m^2 - 15m = -48m + 36 - 20m^2 + 15m$$

$$\Rightarrow 56m^2 + 66m - 56 = 0$$

$$\Rightarrow 28m^2 + 33m - 28 = 0$$

$$\Rightarrow 28m^2 + 49m - 16m - 28 = 0$$

$$\Rightarrow$$
 7*m* (4*m* + 7) – 4 (4*m* + 7) = 0

$$\Rightarrow$$
 $(7m-4)(4m+7)=0$

$$\Rightarrow 7m - 4 = 0; 4m + 7 = 0 \Rightarrow m = \frac{4}{7}, \frac{-7}{4}$$

-Substituting in (i), we get For
$$m = \frac{4}{7}$$
 and For $m = \frac{-7}{4}$

$$y-5=\frac{4}{7}(x-4)$$
 and $y-5=\frac{-7}{4}(x-4)$

i.e.
$$7y - 35 = 4x - 16$$
 and $4y - 20 = -7x + 28$

i.e.
$$4x - 7y + 19 = 0$$
 and $7x + 4y - 48 = 0$

SECTION – E (Case Study Based Questions)

Questions 19 to 20 carry 4 marks each.

19. One triangular shaped pond is there in a park. Three friends Rani, Mansi, Sneha are sitting at the corners of the triangular park. They are studying in Class XI in an International. Rani marked her position as (2, -2), Mansi marked as (1, 1) and Sneha marked her position as (-1, 0)as shown in figure given below.

Based on the above information answer the following questions.

- (i) Find the equation of lines formed by Rani and Mansi. (1)
- (ii) Find the Slope of equation of line formed by Rani and Sneha. (1)
- (iii) Find the equation of median of lines through Rani. (1)
- (iv) Find the equation of altitude through Mansi. (1)

Ans: (i) The equation of line AB is
$$y-1 = \frac{-2-1}{2-1}(x-1)$$
 $\left[\because y-y_1 = \frac{y_2-y_1}{x_2-x_1}(x-x_1) \right]$

$$\Rightarrow$$
 y -1 = -3x + 3 \Rightarrow 3x + y = 4

- (ii) Slope of equation of line AC is
- (iii) Let D be the mid-point of BC.

Coordinates of D are
$$\left(\frac{1-1}{2}, \frac{0+1}{2}\right) = \left(0, \frac{1}{2}\right)$$

∴ Equation of AD is
$$y+2 = \frac{\frac{1}{2}+2}{0-2}(x-2) \Rightarrow y+2 = \frac{-5}{4}(x-2)$$

$$\Rightarrow$$
 4y + 8 = $-5x + 10$

$$\Rightarrow$$
 5x + 4y = 2

- (iv) Slope of AC = -2/3
- \therefore Slope of BE = 3/2 [: BE \perp AC]

Equation of altitude through B is
$$y-1 = \frac{3}{2}(x-1) \Rightarrow 3x - 2y = 1$$

20. One day the mathematics teacher drew a triangle $\triangle ABC$ while revising straight lines. He marked vertices A(1, 4), B (2, -3) and C(-1, -2) as shown in the given below figure. AD is the median and AM is the altitude through A.

Based on the above information answer the following questions.

- (i) Find the slope of BC. (1)
- (ii) Find the equation of median through A. (1)
- (iii) Find the equation of the altitude through A. (1)
- (iv) Find the equation of right bisector of side BC. (1) Ans:

(i) Slope of BC =
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{-2 - (-3)}{-1 - 2} = \frac{-2 + 3}{-3} = -\frac{1}{3}$$

- (ii) Since D is the mid-point of BC.
- \therefore Coordinates of D are $\left(\frac{2-1}{2}, \frac{-3-2}{2}\right) = \left(\frac{1}{2}, -\frac{5}{2}\right)$

$$\therefore \text{ Slope of AD} = \frac{-\frac{5}{2} - 4}{\frac{1}{2} - 1} = \frac{-\frac{13}{2}}{-\frac{1}{2}} = 13$$

 \therefore Equation of the median AD is y - 4 = 13(x - 1)

$$\Rightarrow 13x - y - 9 = 0$$

(iii) Since AM is the altitude through A.

$$\therefore$$
 Slope of AM = $-1/\text{slope}$ of BC = 3

 \therefore Equation of the altitude through A is given by y - 4 = 3(x - 1)

$$\Rightarrow$$
 y - 4 = 3x - 3 \Rightarrow 3x - y + 1 = 0

(iv) Equation of the right bisector of BC is a line which passes through D and having slope is 3.

$$\therefore y - \left(-\frac{5}{2}\right) = 3\left(x - \frac{1}{2}\right) \Rightarrow y + \frac{5}{2} = 3x - \frac{3}{2}$$

$$\Rightarrow$$
 3x - y - 4 = 0