KENDRIYA VIDYALAYA GACHIBOWLI, GPRA CAMPUS, HYD-32 PRACTICE PAPER (2023-24)

CHAPTER 02 RELATIONS AND FUNCTIONS (ANSWERS)

MAX. MARKS: 40 SUBJECT: MATHEMATICS CLASS: XI DURATION: 1½ hrs

General Instructions:

- All questions are compulsory.
- This question paper contains 20 questions divided into five Sections A, B, C, D and E. (ii).
- (iii). Section A comprises of 10 MCQs of 1 mark each. Section B comprises of 4 questions of 2 marks each. Section C comprises of 3 questions of 3 marks each. Section D comprises of 1 question of 5 marks each and Section E comprises of 2 Case Study Based Questions of 4 marks each.
- (iv). There is no overall choice.
- (v). Use of Calculators is not permitted

$\frac{\underline{SECTION} - \underline{A}}{\text{Questions 1 to 10 carry 1 mark each.}}$

1. If $A \times B = \{(a, 1), (b, 3), (a, 3), (b, 1), (a, 2), (b, 2)\}$, find A and B, then set B is (b) $\{a, b\}$ (c) {1, 2} (d) {1, 2, 3} $(a) \{a\}$

Ans: (d) {1, 2, 3}

First entry \in set A and second entry \in set B

 \therefore A = {a, b}, B = {1, 2, 3}

2. Range of the function $f(x) = \frac{x}{x+2}$ is

(b)
$$R - \{2\}$$

(c) $R - \{1\}$ (d) $R - \{-2\}$

Ans: (c) $R - \{1\}$

$$y = \frac{x}{x+2} \Rightarrow xy + 2y = x$$

$$\Rightarrow 2y = x(1-y) \Rightarrow x = \frac{2y}{1-y}$$

 $v \neq 1$. Range = R - {1}

3. If n(A) = 3, n(B) = 2, then number of non empty relations from set A to set B are

(c) 64

(d) 63

Ans: (d) 63, as $n(A \times B) = 6$

Total relations = $2^6 = 64$

Total non-empty relations = 64 - 1 = 63

4. Range of the function $f(x) = \frac{x+4}{|x+4|}$ is

(a) {4}

(b) {-4}

(c) $\{-1, 1\}$

(d) any real number

Ans: (c)
$$\{-1, 1\}$$

 $|x+4| = \begin{cases} x+4, & x \ge -4 \\ -(x+4), & x < -4 \end{cases}$

5. If $[x]^2 - 5[x] + 6 = 0$, where [] denote the greatest integer function, then

(a) $x \in [3, 4)$

(b) $x \in [2, 3)$

(c) $x \in [2, 3)$

(d) $x \in [2, 4)$

Ans: (d) $x \in [2, 4)$, we have $[x]^2 - 5[x] + 6 = 0$

$$\Rightarrow [x]^2 - 3[x] - 2[x] + 6 = 0$$

$$\Rightarrow [x] ([x] - 3) - 2([x] - 3) = 0$$

$$\Rightarrow$$
 ([x] - 2) ([x] - 3) = 0 \Rightarrow [x] - 2 = 0 or [x] - 3 = 0

$$\Rightarrow [x] = 2 \text{ or } [x] = 3 \Rightarrow x \in [2, 3) \text{ or } x \in [3, 4) \Rightarrow x \in [2, 4)$$

- **6.** Domain of $\sqrt{a^2-x^2}$ (a > 0) is
 - (a) (-a, a)
- (b) [-a, a]
- (c) [0, a]
- (d) (-a, 0]

Ans: (b) [-a, a], let $y = \sqrt{a^2 - x^2}$ the function y is defined if $a^2 - x^2 > 0 \Rightarrow x^2 - a^2 < 0 \text{ or } x^2 < a^2$

$$-a \le x \le a$$

So, domain of y = [-a, a]

- 7. Given set $A = \{1, 2, 3, ..., 10\}$. Relation R is defined in set A as $R = \{(a, b) \in A \times A : a = 2b\}$. Then range of relation R is
 - (a) {2, 4, 6, 8, 10}

- (b) {1, 3, 5, 7, 9}
- (c) $\{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5)\}$ (d) $\{1, 2, 3, 4, 5\}$

Ans: (d) $\{1, 2, 3, 4, 5\}$, as $R = \{(2, 1), (4, 2), (6, 3), (8, 4), (10, 5)\}$

- 8. Let n(A) = m and n(B) = n. Then the total number of non-empty relations that can be defined from A to B is
 - (a) mⁿ

- (b) $n^{m} 1$
- (c) mn 1
- (d) $2^{mn} 1$

Ans: (d) $2^{mn} - 1$, as n(A) = m, $n(B) = n \Rightarrow n(A \times B) = mn$

So, number of relations = 2^{mn} including void relation f.

Number of non-empty relations = $2^{nm} - 1$

- For Q9 and Q10, a statement of assertion (A) is followed by a statement of reason (R). Choose the correct answer out of the following choices.
 - (a) Both A and R are true and R is the correct explanation of A.
 - (b) Both A and R are true but R is not the correct explanation of A.
 - (c) A is true but R is false.
 - (d) A is false but R is true.
- 9. Assertion (A): Let $A = \{1, 2\}$ and $B = \{3, 4\}$. Then, number of relations from A to B is 16. **Reason (R):** If n(A) = p and n(B) = q, then number of relations is 2^{pq} .

Ans: (a) Both A and R are true and R is the correct explanation of A.

9).

Reason (R): The range of the relation $R = \{(x + 2, x + 4) : x \in \mathbb{N}, x < 8\}$ is $\{1, 2, 3, 4, 5, 6, 7\}$.

Ans: (c) A is true but R is false.

 $\frac{\underline{SECTION} - \underline{B}}{\text{Questions 11 to 14 carry 2 marks each.}}$

11. Let $f: \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 + 3$ Find (i) $\{x: f(x) = 28\}$ (ii) The pre-images of 39 and 2 under 'f'.

Ans: (i) $28 = x^2 + 3 \Rightarrow x^2 = 25 \Rightarrow x = \pm 5$

(ii) $39 = x^2 + 3 \Rightarrow x^2 = 36 \Rightarrow x = \pm 6$;

 $2 = x^2 + 3 \Rightarrow x^2 = -1$, not possible

Ans: Relation R is $\{(1, 5), (2, 6), (3, 7), (4, 8), (5, 9), (6, 10)\}$

Domain of $R = \{1, 2, 3, 4, 5, 6\}$; Range of $R = \{5, 6, 7, 8, 9, 10\}$

13. Find the domain of each of the following functions given by : $f(x) = \frac{x^3 - x + 3}{x^2 - 1}$

Ans:
$$f(x) = \frac{x^3 - x + 3}{x^2 - 1}$$
,

For domain, $x^2 - 1 \neq 0 \Rightarrow x \neq \pm 1$

- : Domain = $R \{-1, 1\}$
- **14.** Find the range of the following functions given by : $f(x) = \frac{|x-4|}{|x-4|}$

Ans:
$$y = \frac{(x-4)}{(x-4)} or \frac{-(x-4)}{(x-4)}$$
, i.e. 1 or -1

 \therefore range $\{-1, 1\}$

 $\frac{SECTION-C}{\text{Questions 15 to 17 carry 3 marks each.}}$

15. Find the domain and the range of the function : $f(x) = \sqrt{x^2 - 4}$

Ans: Given, $f(x) = \sqrt{x^2 - 4}$; For D_f , f(x) must be a real number.

$$\Rightarrow \sqrt{x^2 - 4}$$
 must be a real number. $\Rightarrow x^2 - 4 \ge 0 \Rightarrow (x + 2)(x - 2) \ge 0$

 \Rightarrow Either $x \le -2$ or $x \ge 2$. \Rightarrow D_f = $(-\infty, -2] \cup [2, \infty)$.

For R_f, let
$$y = \sqrt{x^2 - 4}$$
 ... (i)

As square root of a real number is always non-negative, $y \ge 0$.

On squaring (i), we get $y^2 = x^2 - 4 \Rightarrow x^2 = y^2 + 4$ but $x^2 \ge 0 \ \forall x \in D_f$.

 \Rightarrow $y^2 + 4 \ge 0 \Rightarrow y^2 \ge -4$, which is true $\forall y \in \mathbb{R}$,

Also, $y \ge 0$. $\Rightarrow R_f = [0, \infty)$.

16. Find the domain and range of the real function $f(x) = \sqrt{9 - x^2}$

Ans: Given function is $f(x) = \sqrt{9 - x^2}$

For domain of 'f', $9 - x^2 \ge 0$

$$\Rightarrow 9 \ge x^2 \Rightarrow x^2 \le 9 \Rightarrow -3 \le x \le 3$$

: Domain is $\{x \in \mathbb{R} \mid -3 \le x \le 3\}$, i.e. [-3, 3]

For range : $f(x) = \sqrt{9 - x^2} \Rightarrow v = \sqrt{9 - x^2}$

$$\sqrt{9-x^2}$$
 is always +ve

$$\Rightarrow$$
 y is always +ve.

$$\Rightarrow y^2 = 9 - x^2 \Rightarrow x^2 = 9 - y^2$$

$$\Rightarrow x = \sqrt{9 - y^2}$$

For x to exist $9 - y^2 \ge 0 \Rightarrow y^2 \le 9 \Rightarrow -3 \le y \le 3$

As
$$y \ge 0$$

 \therefore Range = [0, 3]

17. If $A = \{x : x \in W, x < 2\}$, $B = \{x : x \in N, 1 < x < 5\}$, $C = \{3, 5\}$ find

$$(i) \; \mathsf{A} \times (\mathsf{B} \cap \mathsf{C}) \quad (ii) \; \mathsf{A} \times (\mathsf{B} \cup \mathsf{C})$$

Ans:
$$A = \{x : x \in W, x < 2\} = \{0, 1\},\$$

B =
$$\{x : x \in \mathbb{N}, 1 < x < 5\} = \{2, 3, 4\};$$

$$C = \{3, 5\}$$

(i)
$$A \times (B \cap C) = \{0, 1\} \times \{3\} = \{(0, 3), (1, 3)\}$$

(ii)
$$A \times (B \cup C) = \{0, 1\} \times \{2, 3, 4, 5\}$$

$$= \{(0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4), (1, 5)\}$$

<u>SECTION – D</u>

Questions 18 carry 5 marks.

18. (a) Relations R_1 and R_2 are defined on the set Z of integers as follows:

$$(x, y) \in R_1 \iff x^2 + y^2 = 25 ; (y, x) \in R_2 \iff x^2 + y^2 = 25$$

Express R₁ and R₂ as the sets of ordered pairs and hence find their respective domains.

- (b) A relation R is defined from a set $A = \{2, 3, 4, 5\}$ to a set $B = \{3, 6, 7, 10\}$ as follows: (x, y)
- $\in \mathbb{R} \Leftrightarrow x \text{ divides } y$. Express R as a set of ordered pairs and determine the domain and range of R.

Ans: (a)
$$(x, y) \in R \iff x^2 + y^2 = 25$$

$$\Leftrightarrow y = \pm \sqrt{25 - x^2}$$

We observe that : $x = 0 \Rightarrow y = \pm 5$

$$x = \pm 3 \Rightarrow y = \sqrt{25 - 9} = \pm 4,$$

$$x = \pm 4$$
, $y = \sqrt{25-16} = \pm 3$

$$x = \pm 5, \Rightarrow y = \sqrt{25 - 25} = 0.$$

$$R_1 = \{(0, 5), (0, -5), (3, 4), (-3, 4), (3, -4), (-3, -4), (4, 3), (-4, 3), (4, -3), (-4, -3), (5, 0), (-5, 0)\}$$

$$R_2 = \{(5, 0), (-5, 0), (4, 3), (4, -3), (-4, 3), (-4, -3), (3, 4), (3, -4), (-3, 4), (-3, -4), (0, 5), (0, -5)\}$$

Domain
$$(R_1) = \{0, 3, -3, 4, -4, 5, -5\} = Domain (R_2)$$

- (b) a|b stands for 'a divides b'. For the elements of the given sets A and B, we find that 2|6, 2|10, 3|3, 3|6 and 5|10.
- \therefore (2, 6) \in R, (2, 10) \in R, (3, 3) \in R, (3, 6) \in R and (5, 10) \in R.

Thus,
$$R = \{(2, 6), (2, 10), (3, 3), (3, 6), (5, 10)\}$$

Clearly, Domain $(R) = \{2, 3, 5\}$ and range $(R) = \{3, 6, 10\}$.

<u>SECTION – E (Case Study Based Questions)</u> Questions 19 to 20 carry 4 marks each.

19. Maths teacher started the lesson Relations and Functions in Class XI. He explained the following topics:

Ordered Pairs: The ordered pair of two elements a and b is denoted by (a, b): a is first element (or first component) and b is second element (or second component).

Two ordered pairs are equal if their corresponding elements are equal i.e., $(a, b) = (c, d) \Rightarrow a = c$ and b = d

Cartesian Product of Two Sets: For two non-empty sets A and B, the cartesian product A x B is the set of all ordered pairs of elements from sets A and B.

In symbolic form, it can be written as A x B= $\{(a, b) : a \in A, b \in B\}$

Based on the above topics, answer the following questions.

- (i) If (a-3, b+7) = (3, 7), then find the value of a and b
- (ii) If (x + 6, y 2) = (0, 6), then find the value of x and y
- (iii) If (x + 2, 4) = (5, 2x + y), then find the value of x and y
- (iv) Find x and y, if (x + 3, 5) = (6, 2x + y).

Ans:

(i) We know that, two ordered pairs are equal, if their corresponding elements are equal.

$$(a-3, b+7) = (3, 7)$$

$$\Rightarrow$$
 a – 3 = 3 and b + 7 = 7 [equating corresponding elements]

$$\Rightarrow$$
 a = 3 + 3 and b = 7 - 7 \Rightarrow a= 6 and b = 0

(ii)
$$(x + 6, y - 2) = (0, 6)$$

$$\Rightarrow$$
 x + 6 = 0 \Rightarrow x = -6 and y - 2 = 6 \Rightarrow y = 6 + 2 = 8

(iii)
$$(x + 2, 4) = (5, 2x + y)$$

$$\Rightarrow$$
 x + 2 = 5 \Rightarrow x = 5 - 2 = 3 and 4 = 2x + y \Rightarrow 4 = 2 x 3 + y \Rightarrow y = 4 - 6 = -2

(iv)
$$x + 3 = 6$$
, $2x + y = 5 \Rightarrow x = 3$, $y = 1$

20. Maths teacher explained the topics:

Method to Find the Sets When Cartesian Product is Given

For finding these two sets, we write first element of each ordered pair in first set say A and corresponding second element in second set B (say).

Number of Elements in Cartesian Product of Two Sets

If there are p elements in set A and q elements in set B, then there will be pq n(A) = p and n(B) = q, then $n(A \times B) = pq$

Based on the above two topic, answer the following questions.

- (i) If A x B = $\{(a, 1), (b, 3), (a, 3), (b, 1), (a, 2), (b, 2)\}$. Then, find A and B
- (ii) If the set A has 3 elements and set B has 4 elements, then find the number of elements in A x B
- (iii) A and B are two sets given in such a way that A x B contains 6 elements. If three elements of A x B are (1, 3), (2, 5) and (3, 3), then find A, B
- (iv) The cartesian product P x P has 16 elements among which are found (a, 1) and (b, 2). Then, find the set P
- Ans: (i) Here, first element of each ordered pair of A x B gives the elements of set A and corresponding second element gives the elements of set B.
- $A = \{a, b\} \text{ and } B = \{1,3,2\}$
- (ii) Given, n(A) = 3 and n(B) = 4.
- : The number of elements in A x B is $n(A \times B) = n(A) \times n(B) = 3 \times 4 = 12$
- (iii) $A = \{1, 2, 3\}$ and $B = \{3, 5\}$
- $: A \times B = \{1, 2, 3\} \times \{3, 5\} = \{(1,3), (1,5), (2,3), (2,5), (3,3), (3,5)\}$
- (iv) Given $n(P \times P) = 16$
- $\Rightarrow n(P).n(P) = 16 \Rightarrow n(P) = 4$

Now, as $(a, 1) \in P$

 \Rightarrow a \in P and 1 \in P

and as $(b, 2) \in P$

 \Rightarrow b \in P and 2 \in P

 \Rightarrow a, b, 1, 2 \in P

Hence P has exactly four elements.

Prepared by: M. S. KumarSwamy, TGT(Maths)