KENDRIYA VIDYALAYA SANGATHAN, REGIONAL OFFICE LUCKNOW

MARKING SCHEME

CLASS VIII

SUBJECT:- MATHEMATICS

TIME ALLOWED : 2Hours 30Mins

MAXIMUM MARKS:60

	SECTION A	
1	A) 86200	
2	B) (t+4) (t +4)	
3	C) a^2-b^2	
4	A) 31	
5	C) 1/16	
6	B) y will decrease	
7	D) 125 cm ³	
8	C) 26	
9	C) 0	
10	C) 8a-2ab+2b-15	
11	C) 21 cm	
12	A) 2m+m ²	
13	B) 1.6×10^{-19} coulomb	
14	C) 4	
15	B)8	
	SECTION C	
16	36	
	OR	
	1.5	
17	(a) 36.5°	
	(b) 12 noon	
18	3	
19	y = 2/3	
20	Area of rhombus= $\frac{1}{2} \times d_1 \times d_2$	1
	$=\frac{1}{2} \times 16 \times 10.2$	
	$= 81.6 \text{ cm}^2$	1
	OR	
	Area of trapezium= $\frac{1}{2} \times (a+b) \times h$	1
	$=\frac{1}{2} \times (1+1.2) \times 0.8$	
	$= 0.88 m^2$	1
	SECTION D	

21	Let the nu	mber of	f bottles fille	ed in five hour	$\mathbf{s} = \mathbf{x}$			
	Hours			1		Х		
	Bottles			75		1800		
	Here ratio	o of hours and bottles are in direct proportion.						
	$\therefore \frac{6}{040} = \frac{5}{7}$						1	
	x = 700 bo	ttles					1	
		OR						
	Let the ler	length of model ship = x						
	Length o	of actual ship (in m) 12 28						
	Length o	n of model ship (in cm) 9 x						
	Here ratio $12 28$	length	of model sh	ip and length o	of actual ship a	re in dire	ct proportion	. 1
	$\therefore \frac{11}{9} = \frac{10}{x}$							1
	x =21 cm							1
22	5x-2(2x-7)=	=2(3x-1)-	$\frac{7}{2}$					
	5x-4x-14=6	$x-2+\frac{7}{2}$						1
	x + 14 = 6x	$x + \frac{3}{2}^{2}$						
	$5x=14-\frac{3}{2}$	2						1
	$x = \frac{5}{2}$							1
23	(i)	The stu	ident scored	105 marks in H	indi.			1
25	(ii)	Marks	obtained in N	Mathematics=13	35			-
		Marks obtained in Hindi=105						
		Difference=135-105=30						
		Thus, 30 more marks were obtained by the student in Mathematics than in						
	(:::)	Hindi. 1						
	(111)	The sum of marks in Social Science and Wiathematics = $97.5 + 135 = 232.5$ The sum of marks in Science and Hindi = $120 \pm 105 = 225$						
		Yes, the sum of the marks in Social Science and Mathematics is more than that in						
		Science and Hindi.						
		OR						
		(i)	The probab	oility of getting a	green sector= $\frac{4}{7}$	<u>k</u> 7		1
		(ii)	the probabi	ility of getting a	non blue= $\frac{5}{7}$			1
		(iii)	the probabi	ility of a getting	a non red secto	$r=\frac{6}{7}$		1
						,		

24						
	4c(-a+b+c)-[3a(a+b+c)-2b(a-b+c)]					
	$= -4ac + 4bc + 4c^{2} - \left[3a^{2} + 3ab + 3ac - 2ab + 2b^{2} - 2bc \right]$					
	$= -4ac + 4bc + 4c^{2} - \left[3a^{2} + 2b^{2} + 3ab - 2bc + 3ac - 2ab \right]$					
	$= -4ac + 4bc + 4c^{2} - \left[3a^{2} + 2b^{2} + ab + 3ac - 2bc\right]$					
	$= -4ac + 4bc + 4c^2 - 3a^2 - 2b^2 - ab - 3ac + 2bc$					
	$= -3a^{2} - 2b^{2} + 4c^{2} - ab + 4bc + 2bc - 4ac - 3ac$					
	$= -3a^2 - 2b^2 + 4c^2 - ab + 6bc - 7ac$					
25	Diameter of road roller = 84 cm					
	Radius of road roller(r)= $\frac{84}{2} = 42 \ cm$					
	Length of road roller (h)= $1 \text{ m} = 100 \text{ cm}$					
	Curved surface area of road roller = $2\pi rh = 2 \times \frac{22}{7} \times 42 \times 100 = 26400 cm^2$ 1					
	\therefore Area covered by road roller in 750 revolutions = 26400 x 750					
	$= 1,98,00,000 \text{ cm}^2 $ 1					
	$= 1980 \text{ m}^{2} [1 \text{ m}^{2} = 10,000 \text{ cm}^{2}]$ Hence, the area of the road is 1980 m ² .					
	SECTION E					
26	Let the distance travelled (in km) in 20 minutes be x and time taken					
	(in minutes) to cover 250 km be y.					
	Distance travelled (in km)75x250					
	time taken (in minutes) 60 20 y					
	Since the speed is uniform, therefore, the distance covered would be directly					
	proportional to time. 1					
	(i) We have $\frac{75}{60} = \frac{x}{20}$					
	$x = 25 \text{ km}^{30}$					
	So, the train will cover a distance of 25 km in 20 minutes. 1					
	(ii) Also $\frac{75}{62} = \frac{250}{10}$					
	v = 200 mints					
	Therefore, 3 hours 20 minutes will be required to cover a distance of 250 kilometres.					
	Let distance covered in the map be x.					
	Actual distance (in km) 18 72 distance covered in man (in cm) 1 x					
	Here actual distance and distance covered in the man are in direct proportion					
	$\cdot \frac{18}{2} = \frac{72}{2}$					
	$\left \begin{array}{c} \cdot \cdot \overline{1} - \overline{x} \\ \cdot \overline{x} \end{array} \right $					
1	x = 4 cm					

We find the central angle of each sector. Here the total sale = 720. 27. We thus have this table. 2 Sales (in ?) In Fraction Item Central Angle $\frac{320}{720} = \frac{4}{9}$ $\frac{4}{9} \times 360^\circ = 160^\circ$ Ordinary Bread 320 120 $=\frac{1}{6}$ $\frac{1}{6} \times 360^\circ = 60^\circ$ 120 Biscuits 720 2 9 160 $\frac{2}{9} \times 360^\circ = 80^\circ$ Cakes and pastries 160 720 $\frac{80}{720} = \frac{1}{9}$ × 360* = 40* Fruit Bread 80 õ $\frac{40}{720} - \frac{1}{18}$ $\frac{1}{18} \times 360^\circ - 20^\circ$ Others 40 Now, we make the pie chart 2 Biscuits Ordinary Bread Calles stries Fruit Others Bread 20° 40°

(i)
$$x^2 + 6x - 16 = x^2 - 2x + 8x - 16 = x(x - 2) + 8(x - 2) = (x + 8)(x - 2)$$

(ii)

$$x^{4} - (y+z)^{4} = (x^{2})^{2} - [(y+z)^{2}]^{2}$$

$$= [x^{2} - (y+z)^{2}][x^{2} + (y+z)^{2}] \qquad [\because a^{2} - b^{2} - (a-b)(a+b)]$$

$$= [x - (y+z)][x + (y+z)][x^{2} + (y+z)^{2}] \qquad [\because a^{2} - b^{2} - (a-b)(a+b)]$$

$$= (x - y + z)(x + y + z)[x^{2} + (y+z)^{2}]$$

OR

$$12xy(9x^{2}-16y^{2}) \div 4xy(3x+4y) = \frac{12xy(9x^{2}-16y^{2})}{4xy(3x+4y)}$$
$$= \frac{12xy[(3x)^{2}-(4y)^{2}]}{4xy(3x+4y)}$$
$$= \frac{12xy(3x-4y)(3x+4y)}{4xy(3x+4y)} \qquad [\because a^{2}-b^{2}=(a-b)(a+b)]$$
$$= 3(3x-4y)$$

$$p^{2}+6p+8 = p^{2} + (4+2)p + 4 \times 2$$

= $p^{2}+4p+2p+4 \times 2$
= $p(p+4)+2(p+4)$
= $(p+4)(p+2)$

28

(i)

(ii)

29	(i)	Tuesday, Friday, Sunday	2	
	(ii)	35 ⁰ C	1	
	(iii)	Thursday	1	
30	(i)	Rectangle	1	
	(ii)	volume	1	
	(iii)	905.14 cm ³	2	