10 Short Questions

1. What is the definition of continuity of a function at a point?

A function f(x) is continuous at x = c if $\lim_{x \to c} f(x) = f(c)$.

- 2. What is the left-hand limit of f(x) = |x| at x = 0? $\lim_{x\to 0^-} |x| = 0$.
- 3. Check the continuity of $f(x) = x^2$ at x = 0.

Solution:

- f(0) = 0
- $\lim_{x\to 0} f(x) = 0.$
- Hence, f(x) is continuous at x = 0.
- 4. What is the relationship between continuity and differentiability?

If a function is differentiable at a point, it is continuous at that point.

- 5. Determine the points of discontinuity of f(x) = [x], the greatest integer function. f(x) is discontinuous at all integers.
- 6. State whether f(x) = |x| is continuous at x = 0.

Yes, it is continuous as the left-hand limit, right-hand limit, and function value are equal.

7. What is the condition for continuity at an endpoint of an interval?

The one-sided limit should equal the function value at the endpoint.

8. Is f(x) = 1/x continuous at x = 0? Why?

No, because the function is not defined at x = 0.

9. For $f(x) = x^3$, check if it is continuous at x = 2.

 $\lim_{x\to 2} f(x) = f(2) = 8$. Hence, f(x) is continuous at x = 2.

10. What is the derivative of $f(x) = x^n$?

 $f'(x) = n \cdot x^{n-1}.$

10 Long Questions

1. Prove that f(x) = 5x - 3 is continuous at x = 0, x = -3, and x = 5.

Solution:

- At x = 0: f(0) = -3, $\lim_{x \to 0} f(x) = -3$.
- At x = -3: f(-3) = -18, $\lim_{x \to -3} f(x) = -18$.
- At x = 5: f(5) = 22, $\lim_{x \to 5} f(x) = 22$.
- In all cases, $\lim_{x\to c} f(x) = f(c)$.
- 2. Check the continuity of f(x) = |x| at x = 0.

Solution:

- f(0) = 0.
- Left-hand limit: $\lim_{x\to 0^-} f(x) = \lim_{x\to 0^-} -x = 0$.
- Right-hand limit: $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} x = 0$.
- Since all limits and the function value are equal, f(x) is continuous at x = 0.

3. Prove that $f(x) = x^3 + x^2 - 1$ is continuous for all $x \in \mathbb{R}$.

Solution:

- f(x) is a polynomial function.
- · Polynomials are continuous everywhere.
- Hence, f(x) is continuous for all real numbers.
- 4. Find the points of discontinuity of $f(x) = \begin{cases} x+2, & \text{if } x \leq 1 \\ x-2, & \text{if } x > 1 \end{cases}$

Solution:

- For x < 1 and x > 1, f(x) is continuous.
- At x = 1, left-hand limit: $\lim_{x \to 1^-} f(x) = 3$.
- Right-hand limit: $\lim_{x\to 1^+} f(x) = -1$.
- Left-hand limit = right-hand limit, so f(x) is discontinuous at x = 1.
- 5. Differentiate $f(x) = \sin(\cos x)$.

Solution:

- Let $y = \sin(\cos x)$.
- By chain rule, $\frac{dy}{dx} = \cos(\cos x) \cdot (-\sin x)$.
- Hence, $\frac{dy}{dx} = -\sin x \cdot \cos(\cos x)$.
- 6. Verify the continuity of $f(x) = \tan x$ for $x = \frac{\pi}{2} + n\pi$.

Solution:

- $\tan x$ is defined and continuous for $x = \frac{\pi}{2} + n\pi$.
- As the left-hand and right-hand limits exist and equal the function value, f(x) is continuous.
- 7. Prove that f(x) = |x| |x + 1| is discontinuous at x = -1.

Solution:

- At x = -1, left-hand limit: -1, right-hand limit: -2.
- Left-hand limit = right-hand limit, so f(x) is discontinuous.
- 8. Differentiate $f(x) = x^x$.

Solution:

- Let $y = x^x$. Taking log: $\ln y = x \ln x$.
- Differentiate: $\frac{1}{y} \cdot \frac{dy}{dx} = \ln x + 1$.
- $\frac{dy}{dx} = x^x (\ln x + 1)$.
- 9. Find the derivative of $f(x) = e^{\sin x}$.

Solution:

- Let $y = e^{\sin x}$.
- $\frac{dy}{dx} = e^{\sin x} \cdot \cos x$.
- 10. Check the continuity of $f(x) = \begin{cases} x^2, & \text{if } x \le 2 \\ 3x + 1, & \text{if } x > 2 \end{cases}$ at x = 2.

Solution:

- Left-hand limit: $\lim_{x\to 2^-} f(x) = 4$.
- Right-hand limit: $\lim_{x\to 2^+} f(x) = 7$.
- Since the limits are not equal, f(x) is not continuous at x = 2.

(Sp)

1. Prove that $f(x) = \cos(x^2)$ is continuous for all $x \in \mathbb{R}$.

Solution:

- 1. $f(x) = \cos(x^2)$ is a composite function. Let $g(x) = x^2$ and $h(x) = \cos(x)$.
- 2. Both g(x) and h(x) are continuous for all $x \in \mathbb{R}$.
- 3. By the theorem of continuity of composite functions, f(x) = h(g(x)) is continuous for all x.
- 4. Therefore, $f(x) = \cos(x^2)$ is continuous for all $x \in \mathbb{R}$.

2. Show that the greatest integer function f(x) = [x] is discontinuous at all integers.

Solution:

- 1. The greatest integer function is defined as f(x) = [x], which gives the largest integer less than or equal to x.
- 2. At an integer c, the left-hand limit is:

$$\lim_{x \to c^{-}} f(x) = c - 1.$$

The right-hand limit is:

$$\lim_{x \to c^+} f(x) = c.$$

3. Since the left-hand limit \exists right-hand limit, f(x) is discontinuous at all integers.

3. Discuss the continuity of $f(x) = \frac{1}{x}$ for x = 0.

Solution:

- 1. The function $f(x) = \frac{1}{x}$ is defined for all x = 0.
- 2. For x > 0, $\lim_{x \to c} \frac{1}{x} = \frac{1}{c}$. Similarly, for x < 0, the limit also equals $\frac{1}{c}$.
- 3. Since the left-hand and right-hand limits equal the function value for all x = 0, f(x) is continuous for x = 0.

4. Check the differentiability of f(x) = |x| at x = 0.

Solution:

1. f(x) = |x| can be written as:

$$f(x) = \begin{cases} x, & \text{if } x \ge 0, \\ -x, & \text{if } x < 0. \end{cases}$$

2. The left-hand derivative at x = 0 is:

$$f'(0^-) = \lim_{h \to 0^-} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^-} \frac{-h - 0}{h} = -1.$$

3. The right-hand derivative at x = 0 is:

$$f'(0^+) = \lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0^+} \frac{h - 0}{h} = 1.$$

4. Since the left-hand derivative \exists right-hand derivative, f(x) is not differentiable at x = 0.

5. Prove that $f(x) = e^x$ is continuous and differentiable for all $x \in \mathbb{R}$.

Solution:

- 1. $f(x) = e^x$ is an exponential function defined for all $x \in \mathbb{R}$.
- 2. Continuity: Let $c \in \mathbb{R}$. The limit is:

$$\lim_{x\to c} e^x = e^c = f(c).$$

Hence, f(x) is continuous for all x.

- 3. Differentiability: The derivative of $f(x) = e^x$ is $f'(x) = e^x$, which exists for all x.
- 4. Therefore, $f(x) = e^x$ is continuous and differentiable for all $x \in \mathbb{R}$.

6. Find the derivative of $f(x) = \tan(x^2)$ **.**

Solution:

- 1. Let $y = \tan(x^2)$.
- 2. By the chain rule:

$$\frac{dy}{dx} = \sec^2(x^2) \cdot \frac{d}{dx}(x^2).$$

3.
$$\frac{dy}{dx} = \sec^2(x^2) \cdot 2x = 2x \sec^2(x^2)$$

7. Determine the continuity of $(f(x) = \beta)$

 x^2 , & \text{if} x \leq 1, \ 2x - 1, & \text{if} x > 1. \end{cases})** Solution:

- 1. For $x \le 1$, $f(x) = x^2$ is continuous. For x > 1, f(x) = 2x 1 is continuous.
- 2. At x = 1:
 - Left-hand limit: $\lim_{x\to 1^-} f(x) = 1^2 = 1$.

- Right-hand limit: $\lim_{x\to 1^+} f(x) = 2(1) 1 = 1$.
- f(1) = 1.
- 3. Since all limits are equal, f(x) is continuous at x = 1.

8. Differentiate $f(x) = \log(\sin x)$.

Solution:

- 1. Let $y = \log(\sin x)$.
- 2. By the chain rule:

$$\frac{dy}{dx} = \frac{1}{\sin x} \cdot \cos x.$$

3. Simplify:

$$\frac{dy}{dx} = \cot x.$$

9. Find the derivative of $f(x) = x^x$.

Solution:

1. Let $y = x^x$. Taking log:

$$\ln y = x \ln x$$
.

2. Differentiate both sides:

$$\frac{1}{y}\frac{dy}{dx} = \ln x + 1.$$

3. Multiply through by $y = x^x$:

$$\frac{dy}{dx} = x^x (\ln x + 1).$$

10. Prove that $f(x) = \sin x + \cos x$ is continuous and differentiable for all x.

Solution:

- 1. $f(x) = \sin x + \cos x$ is a sum of trigonometric functions, which are continuous for all x.
- 2. Continuity: At any $c \in \mathbb{R}$, $\lim_{x \to c} f(x) = \sin c + \cos c = f(c)$. Hence, f(x) is continuous.
- 3. Differentiability: The derivative is:

$$f'(x) = \cos x - \sin x,$$

which exists for all x.

4. Therefore, f(x) is continuous and differentiable for all x.