Important Questions Class 9 Maths Chapter 2

Question 1: Calculate the value of $9x^2 + 4y^2$ if xy = 6 and 3x + 2y = 12.

Answer 1: Consider the equation 3x + 2y = 12

Now, square both sides:

 $(3x + 2y)^2 = 12^2$

 $=> 9x^{2} + 12xy + 4y^{2} = 144$

 $=>9x^{2} + 4y^{2} = 144 - 12xy$

From the questions, xy = 6

So,

 $9x^2 + 4y^2 = 144 - 72$

Thus, the value of $9x^2 + 4y^2 = 72$

Question 2: Evaluate the following using suitable identity

(102)³

Answer 2: We can write 102 as 100+2

Using identity, $(x+y)^3 = x^3 + y^3 + 3xy(x+y)$

 $(100+2)^{3} = (100)^{3} + 2^{3} + (3 \times 100 \times 2)(100+2)$

= 1000000 + 8 + 600(100 + 2)

= 1000000 + 8 + 60000 + 1200

= 1061208

Question 3:Without any actual division, prove that the following 2x^₄

 $-5x^{3} + 2x^{2} - x + 2$ is divisible by $x^{2} - 3x + 2$.

[Hint: Factorise $x^2 - 3x + 2$]

Answer 3: x²-3x+2

x²-2x-1x+2

x(x-2)-1(x-2)

(x-2)(x-1)

Therefore,(x-2)(x-1) are the factors.

```
Considering (x-2),
```

x-2=0

x=2

Then, p(x) becomes,

p(x)=2

```
p(x)=2x^{4}-5x^{3}+2x^{2}-x+2
```

p(2)=2(2)⁴-5(2)³+2(2)²-2+2

=32-40+8

= -40+40=0

Therefore, (x-2) is a factor.

Considering (x-1),

x-1=0

x=1

Then, p(x) becomes,

p(x)=1

```
p(x)=2x^{4}-5x^{3}+2x^{2}-x+2
```

```
p(1)=2(1)<sup>4</sup>-5(1)<sup>3</sup>+2(1)<sup>2</sup>-1+2
```

=2-5+2-1+2

=6-6

=0

Therefore, (x-1) is a factor.

Question 4: Using the Factor Theorem to determine whether g(x) is a factor of p(x) in the following case

(i) $p(x) = 2x^3+x^2-2x-1$, g(x) = x+1Answer 4: $p(x) = 2x^3+x^2-2x-1$, g(x) = x+1 g(x) = 0 $\Rightarrow x+1 = 0$ $\Rightarrow x = -1$ \therefore Zero of g(x) is -1. Now, $p(-1) = 2(-1)^3+(-1)^2-2(-1)-1$ = -2+1+2-1= 0

: By the given factor theorem, g(x) is a factor of p(x).

Question 5: Obtain an example of a monomial and a binomial having degrees of 82 and 99, respectively.

Answer 5: An example of a monomial having a degree of 82 = x⁸²

An example of a binomial having a required degree of $99 = x^{99} + 7$

Question 6: If the two x - 2 and $x - \frac{1}{2}$ are the given factors of px^2

+ 5*x* + *r*, show that *p* = *r*.

Answer 6: Given, $f(x) = px^2+5x+r$ and factors are x-2, $x - \frac{1}{2}$

 $g_1(x) = 0$,

x - 2 = 0

Substituting x = 2 in place of the equation, we get

$$f(x) = px^{2}+5x+r$$

$$f(2) = p(2)^{2}+5(2)+r=0$$

$$= 4p + 10 + r = 0 \dots eq.(i)$$

$$x - \frac{1}{2} = 0$$

$$x = \frac{1}{2}$$

Substituting $x = \frac{1}{2}$ in place of the equation, we get,

 $f(x) = px^{2}+5x+r$ $f(\frac{1}{2}) = p(\frac{1}{2})^{2} + 5(\frac{1}{2}) + r = 0$ = p/4 + 5/2 + r = 0 $= p + 10 + 4r = 0 \dots eq(ii)$

On solving eq(i) and eq(ii),

We get,

4p + r = -10 and p + 4r = -10

the RHS of both equations are the same,

We get,

4p + r = p + 4r

3p=3r

p = r.

Hence Proved.

Question 7: Identify constant, linear, quadratic, cubic and quartic polynomials from the following.

(i) – 7 + x

(ii) 6y

(iii) – ? ³

(iv) 1 - y - ? ³
(v) x - ? ³ + ?⁴
(vi) 1 + x + ?²
(vii) -6?²
(viii) -13
(ix) -p
Answer 7: (i) - 7 + x

The degree of -7 + x is 1.

Hence, it is a linear polynomial.

(ii) 6y

The degree of 6y is 1.

Therefore, it is a linear polynomial.

(iii) − ? ³

We know that the degree of $-?^{3}$ is 3.

Therefore, it is a cubic polynomial.

(iv) 1 – y – ? ³

We know that the degree of $1 - y - ?^3$ is 3.

Therefore, it is a cubic polynomial.

(v) x -?³ +?⁴

We know that the degree of $x - ?^3 + ?^4$ is 4.

Therefore, it is a quartic polynomial.

(vi) 1 + x + ?²

We know that the degree of $1 + x + ?^2$ is 2.

Therefore, it is a quadratic polynomial.

(vii) -6?²

We know that the degree of -6?² is 2.

Therefore, it is a quadratic polynomial.

(viii) -13

We know that -13 is a constant.

Therefore, it is a constant polynomial.

(ix) – p

We know that the degree of -p is 1.

Therefore, it is a linear polynomial.

Question 8: Observe the value of the polynomial $5x - 4x^2 + 3$ at x = 2 and x = -1.

Answer 8: Let the polynomial be $f(x) = 5x - 4x^2 + 3$

Now, for x = 2,

 $f(2) = 5(2) - 4(2)^2 + 3$

=> f(2) = 10 - 16 + 3 = -3

Or, the value of the polynomial $5x - 4x^2 + 3$ at x = 2 is -3.

Similarly, for x = -1,

 $f(-1) = 5(-1) - 4(-1)^2 + 3$

= f(-1) = -5 - 4 + 3 = -6

The value of the polynomial $5x - 4x^2 + 3$ at x = -1 is -6.

Question 9:Expanding each of the following, using all the suitable identities:

- (i) (x+2y+4z)²
- (ii) (2x-y+z)²
- (iii) (-2x+3y+2z)²
- (iv) (3a -7b-c)²

```
(v) (-2x+5y-3z)^2
Answer 9: (i) (x+2y+4z)<sup>2</sup>
Using identity, (x+y+z)^2 = x^2+z^2+2xy+2yz+2zx
Here, x = x
y = 2y
z = 4z
(x+2y+4z)^2 = x^2 + (2y)^2 + (4z)^2 + (2 \times x \times 2y) + (2 \times 2y \times 4z) + (2 \times 4z \times x)
= x^{2}+4y^{2}+16z^{2}+4xy+16yz+8xz
(ii) (2x-y+z)^2
Using identity, (x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx
Here, x = 2x
y = -y
z = z
(2x-y+z)^{2} = (2x)^{2} + (-y)^{2} + z^{2} + (2 \times 2x \times -y) + (2 \times -y \times z) + (2 \times z \times 2x)
= 4x^{2}+y^{2}+z^{2}-4xy-2yz+4xz
(iii) (-2x+3y+2z)^2
Using identity, (x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx
Here, x = -2x
y = 3y
z = 2z
(-2x+3y+2z)^2 = (-2x)^2 + (3y)^2 + (2z)^2 + (2x-2x\times3y) + (2\times3y\times2z) + (2\times2z\times-2x)
= 4x^{2}+9y^{2}+4z^{2}-12xy+12yz-8xz
(iv) (3a - 7b - c)^2
Using identity (x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx
```

Here, x = 3a
y =
$$-7b$$

z = $-c$
 $(3a -7b - c)^2 = (3a)^2 + (-7b)^2 + (-c)^2 + (2 \times 3a \times -7b) + (2 \times -7b \times -c) + (2 \times -c \times 3a)$
= $9a^2 + 49b^2 + c^2 - 42ab + 14bc - 6ca$
(v) $(-2x+5y-3z)^2$
Using identity, $(x+y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$
Here, x = $-2x$
y = 5y
z = $-3z$
 $(-2x+5y-3z)^2 = (-2x)^2 + (5y)^2 + (-3z)^2 + (2 \times -2x \times 5y) + (2 \times 5y \times -3z) + (2 \times -3z \times -2x))$
= $4x^2+25y^2+9z^2-20xy-30yz+12zx$

Question 10: If the polynomials $az^3 + 4z^2 + 3z - 4$ and $z^3 - 4z + leave$ the same remainder when divided by z - 3, find the value of a.

Answer 10: Zero of the polynomial,

g1(z) = 0 z-3 = 0 z = 3

Hence, zero of g(z) = -2a

Let
$$p(z) = az^3 + 4z^2 + 3z - 4$$

Now, substituting the given value of z = 3 in p(z), we get,

$$p(3) = a (3)^3 + 4 (3)^2 + 3 (3) - 4$$

⇒p(3) = 27a+36+9-4

⇒p(3) = 27a+41

Let $h(z) = z^{3}-4z+a$

Now, by substituting the value of z = 3 in h(z), we get,

 $h(3) = (3)^3 - 4(3) + a$

⇒h(3) = 27-12+a

⇒h(3) = 15+a

As per the question,

The two polynomials, p(z) and h(z), leave the same remainder when divided by z-3

So, h(3)=p(3)

⇒15+a = 27a+41

⇒15-41 = 27a – a

⇒-26 = 26a

⇒a = -1

Question 11: Compute the perimeter of a rectangle whose area is $25x^2 - 35x + 12$.

Answer 11: Area of rectangle = $25x^2 - 35x + 12$

We know the area of a rectangle = length × breadth

So, by factoring $25x^2 - 35x + 12$, the length and breadth can be obtained.

 $25x^2 - 35x + 12 = 25x^2 - 15x - 20x + 12$

 $=> 25x^2 - 35x + 12 = 5x(5x - 3) - 4(5x - 3)$

 $=> 25x^2 - 35x + 12 = (5x - 3)(5x - 4)$

Thus, the length and breadth of a rectangle are (5x - 3)(5x - 4).

So, the perimeter = 2(length + breadth)

Therefore, the perimeter of the given rectangle = 2[(5x - 3)+(5x - 4)]

= 2(5x - 3 + 5x - 4)

$$= 2(10x - 7)$$

= 20x - 14

Hence, the perimeter of the rectangle = 20x - 14

Question 12: $2x^2+y^2+z^2-2\sqrt{2xy+4}\sqrt{2yz-8xz}$

Answer 12: Using identity, $(x + y+z)^2 = x^2+y^2+z^2+2xy+2yz+2zx$

We can say that, $x^{2}+^{2}+^{2}+2xy+2yz+2zx = (x+y+z)^{2}$

 $2x^{2}+y^{2}+8z^{2}-2\sqrt{2xy}+4\sqrt{2yz}-8xz$

$$= (-\sqrt{2x})^2 + (2\sqrt{2z})^2 + (2\times -\sqrt{2x}\times y) + (2\times y \times 2\sqrt{2z}) + (2\times 2\sqrt{2} \times -\sqrt{2x})$$

 $= (-\sqrt{2}x + y + 2\sqrt{2}z)^2$

 $= (-\sqrt{2x+y+2\sqrt{2z}})(-\sqrt{2x+y+2\sqrt{2z}})$

Question 13: If ? + 2? is a factor of ? ⁵ – 4?²?³ + 2? + 2? + 3, find a.

Answer 13: According to the question,

Let $p(x) = x^{5} - 4a^{2}x^{3} + 2x + 2a + 3$ and g(x) = x + 2a

g(x) = 0

 \Rightarrow x + 2a = 0

 \Rightarrow x = -2a

Hence, zero of g(x) = -2a

As per the factor theorem,

If g(x) is a factor of p(x), then p(-2a) = 0

So, substituting the value of x in p(x), we get,

 $p(-2a) = (-2a)^{5} - 4a^{2}(-2a)^{3} + 2(-2a) + 2a + 3 = 0$

 $\Rightarrow -32a^{5} + 32a^{5} - 2a + 3 = 0$

 $\Rightarrow -2a = -3$

Question 14: Find the value of $x^3 + y^3 + z^3 - 3xyz$ if $x^2 + y^2 + z^2 = 83$ and x + y + z = 1

Answer 14: Consider the equation x + y + z = 15

From algebraic identities, we know that $(a + b + c)^2 = a^2 + b^2 + c^2 + 2(ab + bc + ca)$

So,

 $(x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + xz)$

From the question, $x^2 + y^2 + z^2 = 83$ and x + y + z = 15

So,

152 = 83 + 2(xy + yz + xz) => 225 - 83 = 2(xy + yz + xz)

Or, xy + yz + xz = 142/2 = 71

Using algebraic identity $a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)$,

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)(x^{2} + y^{2} + z^{2} - (xy + yz + xz))$$

Now,

x + y + z = 15, $x^2 + y^2 + z^2 = 83$ and xy + yz + xz = 71 So, x ³ + y ³ + z ³ - 3xyz = 15(83 - 71) => x ³ + y ³ + z ³ - 3xyz = 15 × 12

Or, x ³ + y ³ + z ³ - 3xyz = 180

Question 15:Verify that:

- (i) $x^3+y^3 = (x+y)(x^2-xy+y^2)$
- (ii) $x^3-y^3 = (x-y)(x^2+xy+y^2)$

Answer 15:(i) $x^3+y^3 = (x+y)(x^2-xy+y^2)$

We know that
$$(x+y)^3 = x^3+y^3+3xy(x+y)$$

 $\Rightarrow x^3+y^3 = (x+y)^3-3xy(x+y)$
 $\Rightarrow x^3+y^3 = (x+y)[(x+y)^2-3xy]$

Taking (x+y) common $\Rightarrow x^3+y^3 = (x+y)[(x^2+y^2+2xy)-3xy]$

Question 16: For what value of m is $?^3 - 2??^2 + 16$ divisible by x + 2?

Answer 16: According to the question,

Let
$$p(x) = x^3 - 2mx^2 + 16$$
, and $g(x) = x + 2$

- g(x) = 0
- \Rightarrow x + 2 = 0
- \Rightarrow x = -2

Hence, zero of g(x) = -2

As per the factor theorem,

if p(x) is divisible by g(x), then the remainder of p(-2) should be zero.

Thus, substituting the value of x in p(x), we obtain,

$$p(-2) = 0$$

$$\Rightarrow (-2)^{3} - 2m(-2)^{2} + 16 = 0$$

$$\Rightarrow 0 - 8 - 8m + 16 = 0$$

$$\Rightarrow 8m = 8$$

$$\Rightarrow m = 1$$

Question 17: If a + b + c = 15 and $a^2 + b^2 + c^2 = 83$, find the value of $a^3 + b^3 + c^3 - 3abc$.

Answer 17: We know that,

 $a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca) \dots(i)$ (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca(ii) Given, a + b + c = 15 and a² + b² + c² = 83 From (ii), we have 152 = 83 + 2(ab + bc + ca) $\Rightarrow 225 - 83 = 2(ab + bc + ca)$ $\Rightarrow 142/2 = ab + bc + ca$ $\Rightarrow ab + bc + ca = 71$ Now, (i) can be written as

 $a^{3} + b^{3} + c^{3} - 3abc = (a + b + c)[(a^{2} + b^{2} + c^{2}) - (ab + bc + ca)]$

 $a^3 + b^3 + c^3 - 3abc = 15 \times [83 - 71] = 15 \times 12 = 180.$

Question 18: Factorise: 27x³+y³+z³–9xyz

Answer 18: The expression $27x^3 + y^3 + z^3 - 9xyz$ can be written as $(3x)^3 + y^3 + z^3 - 3(3x)(y)(z)$

 $27x^3+y^3+z^3-9xyz = (3x)^3+y^3+z^3-3(3x)(y)(z)$

We know that $x^3+y^3+x^3-3xyz = (x+y+z)(x^2+y^2+z^2-xy-yz-zx)$

$$27x^3+y^3+z^3-9xyz = (3x)^3+y^3+z^3-3(3x)(y)(z)$$

$$= (3x+y+z)[(3x)^2+y^2+z^2-3xy-yz-3xz]$$

 $= (3x+y+z)(9x^2+y^2+z-3xy-yz-3xz)$

Question 19: If (x - 1/x) = 4, then evaluate $(x^2 + 1/x^2)$ and $(x^4 + 1/x^4)$.

Answer 19: Given, (x - 1/x) = 4

Squaring both sides, we get,

$$(x - 1/x)^2 = 16$$

 $\Rightarrow x^2 - 2.x.1/x + 1/x^2 = 16$

 $\Rightarrow x^2 - 2 + 1/x^2 = 16$

⇒ $x^{2} + 1/x^{2} = 16 + 2 = 18$ ∴ $(x^{2} + 1/x^{2}) = 18$ (i) Again, squaring both sides of (i), we get $(x^{2} + 1/x^{2})^{2} = 324$ ⇒ $x^{4} + 2.x^{2}.1/x^{2} + 1/x^{4} = 324$ ⇒ $x^{4} + 2 + 1/x^{4} = 324$ ⇒ $x^{4} + 1/x^{4} = 324 - 2 = 322$

 $\therefore (x^4 + 1/x^4) = 322.$

Question 20: Factorise

64m³-343n³

Answer 20: The expression 64m³–343n³ can be written as (4m)³–(7n)³

$$64m^{3}-343n^{3} = (4m)^{3}-(7n)^{3}$$
We know that x³-y³ = (x-y)(x²+xy+y²)

$$64m^{3}-343n^{3} = (4m)^{3}-(7n)^{3}$$
= (4m-7n)[(4m)²+(4m)(7n)+(7n)²]
= (4m-7n)(16m²+28mn+49n²)

Question 21: Find out the values of a and b so that $(2x^3 + ax^2 + x + b)$ has (x + 2) and (2x - 1) as factors.

Answer 21: Let $p(x) = 2x^3 + ax^2 + x + b$. Then, $p(-2) = and p(\frac{1}{2}) = 0$. $p(2) = 2(2)^3 + a(2)^2 + 2 + b = 0$ $\Rightarrow -16 + 4a - 2 + b = 0 \Rightarrow 4a + b = 18 \dots(i)$ $p(\frac{1}{2}) = 2(\frac{1}{2})^3 + a(\frac{1}{2})^2 + (\frac{1}{2}) + b = 0$ $\Rightarrow a + 4b = -3 \dots(ii)$

On solving (i) and (ii), we get a = 5 and b = -2.

Hence, a = 5 and b = -2.

Question 22: Explain that p - 1 is a factor of $p^{10} - 1$ and $p^{11} - 1$.

Answer 22: According to the question,

Let $h(p) = ?^{10} - 1$, and g(p) = ? - 1zero of $g(p) \Rightarrow g(p) = 0$ p - 1 = 0p = 1Therefore, zero of g(x) = 1

We know that,

According to the factor theorem, if g(p) is a factor of h(p), then h(1) should be zero

So,

 $h(1) = (1)^{10} - 1 = 1 - 1 = 0$

 \Rightarrow g (p) is a factor of h(p).

Here, we have $h(p) = ?^{11} - 1$, g(p) = ? - 1

Putting g (p) = $0 \Rightarrow ? - 1 = 0 \Rightarrow ? = 1$

As per the factor theorem, if g (p) is a factor of h(p),

Then h(1) = 0

 \Rightarrow (1) ¹¹ – 1 = 0

Hence, g(p) = ? - 1 is the factor of $h(p) = ? ^{10} - 1$

Question 23: Examine whether (7 + 3x) is a factor of $(3 \times 3 + 7x)$.

Answer 23: Let $p(x) = 3 \times 3 + 7x$ and g(x) = 7 + 3x. Now $g(x) = 0 \Rightarrow x = -7/3$.

By the remainder theorem, p(x) is divided by g(x), and then the remainder is p(-7/3).

Now, $p(-7/3) = 3(-7/3)3 + 7(-7/3) = -490/9 \neq 0$.

 \therefore g(x) is not a factor of p(x).

Question 24:Prove that:

$$x^{3}+y^{3}+z^{3}-3xyz = (1/2) (x+y+z)[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}]$$

Answer 24: We know that,

 $x^{3}+y^{3}+z^{3}-3xyz = (x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-xz)$

$$\Rightarrow x^{3}+y^{3}+z^{3}-3xyz = (1/2)(x+y+z)[2(x^{2}+y^{2}+z^{2}-xy-yz-xz)]$$

 $= (1/2)(x+y+z)(2\times 2+2y^2+^2-2xy-2yz-2xz)$

$$= (1/2)(x+y+z)[(x^2+y^2-2xy)+(y^2+z^2-2yz)+(x^2+z^2-2xz)]$$

$$= (1/2)(x+y+z)[(x-y)^2+(y-z)^2+(z-x)^2]$$

Question 25: Find out which of the following polynomials has x - 2 a factor:

(ii) 4?² + ?−2.

Answer 25: (i) According to the question,

Let $p(x) = 3?^2 + 6?-24$ and g(x) = x - 2 g(x) = x - 2zero of $g(x) \Rightarrow g(x) = 0$ x - 2 = 0 x = 2Hence, zero of g(x) = 2Thus, substituting the value of x in p(x), we get, $p(2) = 3(2)^2 + 6(2) - 24$ = 12 + 12 - 24

the remainder = zero,

We can derive that,

g(x) = x - 2 is factor of $p(x) = 3?^2 + 6?-24$

(ii) According to the question,

Let $p(x) = 4?^2 + ?-2$ and g(x) = x - 2

g(x) = x - 2

zero of $g(x) \Rightarrow g(x) = 0$

$$x - 2 = 0$$

Hence, zero of g(x) = 2

Thus, substituting the value of x in p(x), we get,

$$p(2) = 4(2)^2 + 2-2$$

Since the remainder \neq zero,

We can say that,

g(x) = x - 2 is not a factor of $p(x) = 4?^{2} + ?^{-2}$

Question 26: Factorise $x^2 + 1/x^2 + 2 - 2x - 2/x$.

Answer 26: $x^2 + 1/x^2 + 2 - 2x - 2/x = (x^2 + 1/x^2 + 2) - 2(x + 1/x)$

 $= (x + 1/x)^2 - 2(x + 1/x)$

= (x + 1/x)(x + 1/x - 2).

Question 27: Factorise

8a³+b³+12a²b+6ab²

Answer 27: The expression, $8a^3+b^3+12a^2b+6ab^2$ can be written as $(2a)^3+b^3+3(2a)^2b+3(2a)$ (b)²

 $8a^{3}+b^{3}+12a^{2}b+6ab^{2} = (2a)^{3}+b^{3}+3(2a)^{2}b+3(2a)(b)^{2}$

= (2a+b)³

= (2a+b)(2a+b)(2a+b)

Here, the identity, $(x + y)^3 = x^3 + y^3 + 3xy(x+y)$ is used.

Question 28: By Remainder Theorem, find out the remainder when p(x) is divided by g(x), where

(i)
$$p(?) = ?^3 - 2?^2 - 4? - 1$$
, $g(?) = ? + 1$
(ii) $p(?) = ?^3 - 3?^2 + 4? + 50$, $g(?) = ? - 3$
(iii) $p(?) = 4?^3 - 12?^2 + 14? - 3$, $g(?) = 2? - 1$
(iv) $p(?) = ?^3 - 6?^2 + 2? - 4$, $g(?) = 1 - 3/2$?
Answer 28: (i) Given $p(x) = ?^3 - 2?^2 - 4? - 1$ and $g(x) = x + 1$
Here zero of $g(x) = -1$
By applying the remainder theorem
 $P(x)$ divided by $g(x) = p(-1)$
 $P(-1) = (-1)^3 - 2(-1)^2 - 4(-1) - 1 = 0$
Therefore, the remainder = 0
(ii) given $p(?) = ?^3 - 3?^2 + 4? + 50$, $g(?) = ? - 3$
Here zero of $g(x) = 3$
By applying the remainder theorem $p(x)$ divided by $g(x) = p(3)$
 $p(3) = 3^3 - 3 \times (3)^2 + 4 \times 3 + 50 = 62$
Therefore, the remainder = 62
(iii) $p(x) = 4x^3 - 12x^2 + 14x - 3$, $g(x) = 2x - 1$

Here zero of $g(x) = \frac{1}{2}$

By applying the remainder theorem p(x) divided by $g(x) = p(\frac{1}{2})$

 $P(\frac{1}{2}) = 4(\frac{1}{2})^3 - 12(\frac{1}{2})^2 + 14(\frac{1}{2}) - 3$

= 4/8 - 12/4 + 14/2 - 3

Hence, the remainder = 3/2

(iv) $p(?) = ?^3 - 6?^2 + 2? - 4$, g(?) = 1 - 3/2?

so, zero of g(x) = 2/3

By applying the remainder theorem p(x) divided by g(x) = p(2/3)

$$p(2/3) = (2/3)^3 - 6(2/3)^2 + 2(2/3) - 4$$

= - 136/27

Therefore, the remainder = -136/27

Question 29: Factorise $x^2 - 1 - 2a - a^2$.

Answer 29: $x^2 - 1 - 2a - a^2 = x^2 - (1 + 2a + a^2)$

- $= x^{2} (1 + a)^{2}$ = [x (1 a)][x + 1 + a]
- = (x 1 a)(x + 1 + a)
- $\therefore x^2 1 2a a^2 = (x 1 a)(x + 1 + a).$

Question 30: Evaluate the following using suitable identity

(998)³

Answer 30: We can write 99 as 1000–2

Using identity, $(x-y)^3 = x^3 - y^3 - 3xy(x-y)$

 $(998)^3 = (1000 - 2)^3$

=(1000)³ -2³ -(3×1000×2)(1000-2)

= 100000000-8-6000(1000-2)

= 100000000-8- 6000000+12000

= 994011992

Question 31: Find the zeroes of the polynomial:

 $p(?)=(?-2)^2 - (?+2)^2$

Answer 31: p(x) = $(? -2)^2 - (? + 2)^2$

We know that,

Zero of the polynomial p(x) = 0

Hence, we get,

 $\Rightarrow (x-2)^2 - (x+2)^2 = 0$

Expanding using the identity, $a^2 - b^2 = (a - b) (a + b)$

 \Rightarrow (x - 2 + x + 2) (x - 2 - x - 2) = 0

 $\Rightarrow 2x(-4) = 0$

 $\Rightarrow - 8 x= 0$

Therefore, the zero of the polynomial = 0