Important Questions Class 9 Maths Chapter 2

Question 1: Calculate the value of $9 x^{2}+4 y^{2}$ if $x y=6$ and $3 x+2 y=12$.
Answer 1: Consider the equation $3 x+2 y=12$
Now, square both sides:
$(3 x+2 y)^{2}=12^{2}$
$=>9 x^{2}+12 x y+4 y^{2}=144$
$=>9 x^{2}+4 y^{2}=144-12 x y$
From the questions, $x y=6$
So,
$9 x^{2}+4 y^{2}=144-72$
Thus, the value of $9 x^{2}+4 y^{2}=72$
Question 2:Evaluate the following using suitable identity
$(102)^{3}$
Answer 2: We can write 102 as 100+2
Using identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$
$(100+2)^{3}=(100)^{3}+2^{3}+(3 \times 100 \times 2)(100+2)$
$=1000000+8+600(100+2)$
$=1000000+8+60000+1200$
$=1061208$
Question 3:Without any actual division, prove that the following $2 \mathbf{x}^{4}$
$-5 x^{3}+2 x^{2}-x+2$ is divisible by $x^{2}-3 x+2$.
[Hint: Factorise $\left.x^{2}-3 x+2\right]$
Answer 3: $x^{2}-3 x+2$
$x^{2}-2 x-1 x+2$
$x(x-2)-1(x-2)$
$(x-2)(x-1)$
Therefore, $(x-2)(x-1)$ are the factors.
Considering ($\mathrm{x}-2$),
$x-2=0$
$x=2$

Then, $p(x)$ becomes,
$p(x)=2$
$p(x)=2 x^{4}-5 x^{3}+2 x^{2}-x+2$
$p(2)=2(2)^{4}-5(2)^{3}+2(2)^{2}-2+2$
$=32-40+8$
$=-40+40=0$
Therefore, $(x-2)$ is a factor.
Considering ($x-1$),
$x-1=0$
$x=1$

Then, $p(x)$ becomes,
$p(x)=1$
$p(x)=2 x^{4}-5 x^{3}+2 x^{2}-x+2$
$p(1)=2(1)^{4}-5(1)^{3}+2(1)^{2}-1+2$
$=2-5+2-1+2$
$=6-6$
$=0$

Therefore, $(x-1)$ is a factor.
Question 4: Using the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in the following case
(i) $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$

Answer 4: $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$
$g(x)=0$
$\Rightarrow x+1=0$
$\Rightarrow x=-1$
\therefore Zero of $\mathrm{g}(\mathrm{x})$ is -1 .
Now,
$p(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1$
$=-2+1+2-1$
$=0$
\therefore By the given factor theorem, $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$.
Question 5: Obtain an example of a monomial and a binomial having degrees of 82 and 99 , respectively.

Answer 5: An example of a monomial having a degree of $82=x^{82}$

An example of a binomial having a required degree of $99=x^{99}+7$
Question 6: If the two $x-2$ and $x-1 / 2$ are the given factors of $p x^{2}$
$+5 x+r$, show that $p=r$.
Answer 6: Given, $f(x)=p x^{2}+5 x+r$ and factors are $x-2, x-1 / 2$
$g 1(x)=0$,
$x-2=0$
$x=2$
Substituting $x=2$ in place of the equation, we get
$f(x)=p x^{2}+5 x+r$
$f(2)=p(2)^{2}+5(2)+r=0$
$=4 p+10+r=0 \ldots$ eq.(i)
$x-1 / 2=0$
$x=1 / 2$
Substituting $x=1 / 2$ in place of the equation, we get,
$f(x)=p x^{2}+5 x+r$
$f(1 / 2)=p(1 / 2)^{2}+5(1 / 2)+r=0$
$=p / 4+5 / 2+r=0$
$=p+10+4 r=0 \ldots$ eq(ii)
On solving eq(i) and eq(ii),
We get,
$4 p+r=-10$ and $p+4 r=-10$
the RHS of both equations are the same,
We get,
$4 p+r=p+4 r$
$3 p=3 r$
$p=r$.
Hence Proved.

Question 7: Identify constant, linear, quadratic, cubic and quartic polynomials from the following.
(i) $-7+x$
(ii) $6 y$
(iii) $-?^{3}$
(iv) $1-y-?^{3}$
(v) $x-?^{3}+?^{4}$
(vi) $1+x+?^{2}$
(vii) $-6 ?^{2}$
(viii) -13
(ix) $-p$

Answer 7: (i) - 7 + x
The degree of $-7+x$ is 1 .
Hence, it is a linear polynomial.
(ii) $6 y$

The degree of $6 y$ is 1 .
Therefore, it is a linear polynomial.
(iii) $-?^{3}$

We know that the degree of $-?^{3}$ is 3 .
Therefore, it is a cubic polynomial.
(iv) $1-y-?^{3}$

We know that the degree of $1-y-?^{3}$ is 3 .
Therefore, it is a cubic polynomial.
(v) $x-?^{3}+?^{4}$

We know that the degree of $x-?^{3}+?^{4}$ is 4 .
Therefore, it is a quartic polynomial.
(vi) $1+x+?^{2}$

We know that the degree of $1+x+?^{2}$ is 2 .
Therefore, it is a quadratic polynomial.
(vii) $-6 ?^{2}$

We know that the degree of $-6 ?^{2}$ is 2 .
Therefore, it is a quadratic polynomial.
(viii) -13

We know that -13 is a constant.
Therefore, it is a constant polynomial.
(ix) $-p$

We know that the degree of $-p$ is 1 .
Therefore, it is a linear polynomial.
Question 8: Observe the value of the polynomial $5 x-4 x^{2}+3$ at $x=2$ and $x=-1$.
Answer 8: Let the polynomial be $f(x)=5 x-4 x^{2}+3$
Now, for $x=2$,
$f(2)=5(2)-4(2)^{2}+3$
$\Rightarrow \mathrm{f}(2)=10-16+3=-3$
Or, the value of the polynomial $5 x-4 x^{2}+3$ at $x=2$ is -3 .
Similarly, for $x=-1$,
$f(-1)=5(-1)-4(-1)^{2}+3$
$=>f(-1)=-5-4+3=-6$
The value of the polynomial $5 x-4 x^{2}+3$ at $x=-1$ is -6 .
Question 9:Expanding each of the following, using all the suitable identities:
(i) $(x+2 y+4 z)^{2}$
(ii) $(2 x-y+z)^{2}$
(iii) $(-2 x+3 y+2 z)^{2}$
(iv) $(3 a-7 b-c)^{2}$

(v) $(-2 x+5 y-3 z)^{2}$

Answer 9: (i) $(x+2 y+4 z)^{2}$
Using identity, $(x+y+z)^{2}=x^{2}+^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=x$
$y=2 y$
$z=4 z$
$(x+2 y+4 z)^{2}=x^{2}+(2 y)^{2}+(4 z)^{2}+(2 \times x \times 2 y)+(2 \times 2 y \times 4 z)+(2 \times 4 z \times x)$
$=x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 x z$
(ii) $(2 x-y+z)^{2}$

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=2 x$
$y=-y$
$z=z$
$(2 x-y+z)^{2}=(2 x)^{2}+(-y)^{2}+z^{2}+(2 \times 2 x \times-y)+(2 \times-y \times z)+(2 \times z \times 2 x)$
$=4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$
(iii) $(-2 x+3 y+2 z)^{2}$

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=-2 x$
$y=3 y$
$z=2 z$
$(-2 x+3 y+2 z)^{2}=(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+(2 x-2 x \times 3 y)+(2 \times 3 y \times 2 z)+(2 \times 2 z \times-2 x)$
$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 x z$
(iv) $(3 a-7 b-c)^{2}$

Using identity $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$

Here, $x=3 a$
$y=-7 b$
$z=-c$
$(3 a-7 b-c)^{2}=(3 a)^{2}+(-7 b)^{2}+(-c)^{2}+(2 \times 3 a \times-7 b)+(2 \times-7 b \times-c)+(2 \times-c \times 3 a)$
$=9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 c a$
(v) $(-2 x+5 y-3 z)^{2}$

Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
Here, $x=-2 x$
$y=5 y$
$z=-3 z$
$(-2 x+5 y-3 z)^{2}=(-2 x)^{2}+(5 y)^{2}+(-3 z)^{2}+(2 \times-2 x \times 5 y)+(2 \times 5 y \times-3 z)+(2 \times-3 z \times-2 x)$
$=4 x^{2}+25 y^{2}+9 z^{2}-20 x y-30 y z+12 z x$
Question 10: If the polynomials $a z^{3}+4 z^{2}+3 z-4$ and $z^{3}-4 z+$ leave the same remainder when divided by $z-3$, find the value of a.

Answer 10: Zero of the polynomial,
$g 1(z)=0$
$z-3=0$
$z=3$
Hence, zero of $g(z)=-2 a$
Let $p(z)=a z^{3}+4 z^{2}+3 z-4$
Now, substituting the given value of $z=3$ in $p(z)$, we get,
$p(3)=a(3)^{3}+4(3)^{2}+3(3)-4$
$\Rightarrow p(3)=27 a+36+9-4$
$\Rightarrow p(3)=27 a+41$

Let $h(z)=z^{3}-4 z+a$
Now, by substituting the value of $z=3$ in $h(z)$, we get,
$h(3)=(3)^{3}-4(3)+a$
$\Rightarrow \mathrm{h}(3)=27-12+\mathrm{a}$
$\Rightarrow h(3)=15+a$
As per the question,
The two polynomials, $p(z)$ and $h(z)$, leave the same remainder when divided by $z-3$
So, $h(3)=p(3)$
$\Rightarrow 15+a=27 a+41$
$\Rightarrow 15-41=27 a-a$
$\Rightarrow-26=26 a$
$\Rightarrow a=-1$
Question 11: Compute the perimeter of a rectangle whose area is $25 x^{2}-35 x+12$.
Answer 11: Area of rectangle $=25 x^{2}-35 x+12$
We know the area of a rectangle $=$ length \times breadth
So, by factoring $25 x^{2}-35 x+12$, the length and breadth can be obtained.
$25 x^{2}-35 x+12=25 x^{2}-15 x-20 x+12$
$=>25 x^{2}-35 x+12=5 x(5 x-3)-4(5 x-3)$
$=>25 x^{2}-35 x+12=(5 x-3)(5 x-4)$
Thus, the length and breadth of a rectangle are $(5 x-3)(5 x-4)$.
So, the perimeter $=2$ (length + breadth $)$
Therefore, the perimeter of the given rectangle $=2[(5 x-3)+(5 x-4)]$

$$
\begin{aligned}
& =2(5 x-3+5 x-4) \\
& =2(10 x-7)
\end{aligned}
$$

$$
=20 x-14
$$

Hence, the perimeter of the rectangle $=20 x-14$

Question 12: $2 x^{2}+y^{2}+^{2}-2 \sqrt{ } 2 x y+4 \sqrt{ } 2 y z-8 x z$

Answer 12: Using identity, $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$
We can say that, $x^{2}+^{2}+^{2}+2 x y+2 y z+2 z x=(x+y+z)^{2}$
$2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{ } 2 x y+4 \sqrt{ } 2 y z-8 x z$
$=(-\sqrt{ } 2 x)^{2}+(y)^{2}+(2 \sqrt{ } 2 z)^{2}+(2 x-\sqrt{ } 2 x \times y)+(2 \times y \times 2 \sqrt{ } 2 z)+(2 \times 2 \sqrt{ } 2 \times-\sqrt{ } 2 x)$
$=(-\sqrt{ } 2 x+y+2 \sqrt{ } 2 z)^{2}$
$=(-\sqrt{ } 2 x+y+2 \sqrt{ } 2 z)(-\sqrt{ } 2 x+y+2 \sqrt{ } 2 z)$
Question 13: If $?+2 ?$ is a factor of $?^{5}-4 ?^{2} ?^{3}+2 ?+2 ?+3$, find a.
Answer 13: According to the question,
Let $p(x)=x^{5}-4 a^{2} x^{3}+2 x+2 a+3$ and $g(x)=x+2 a$
$g(x)=0$
$\Rightarrow x+2 a=0$
$\Rightarrow \mathrm{x}=-2 \mathrm{a}$
Hence, zero of $g(x)=-2 a$
As per the factor theorem,
If $g(x)$ is a factor of $p(x)$, then $p(-2 a)=0$
So, substituting the value of x in $p(x)$, we get,

$$
\begin{aligned}
& p(-2 a)=(-2 a)^{5}-4 a^{2}(-2 a)^{3}+2(-2 a)+2 a+3=0 \\
& \Rightarrow-32 a^{5}+32 a^{5}-2 a+3=0 \\
& \Rightarrow-2 a=-3 \\
& \Rightarrow a=3 / 2
\end{aligned}
$$

Question 14: Find the value of $x^{3}+y^{3}+z^{3}-3 x y z$ if $x^{2}+y^{2}+z^{2}=83$ and $x+y+z=1$

Answer 14: Consider the equation $x+y+z=15$
From algebraic identities, we know that $(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2(a b+b c+c a)$
So,
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+x z)$
From the question, $x^{2}+y^{2}+z^{2}=83$ and $x+y+z=15$
So,
$152=83+2(x y+y z+x z)$
$=>225-83=2(x y+y z+x z)$
Or, $x y+y z+x z=142 / 2=71$

Using algebraic identity $a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$,
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-(x y+y z+x z)\right)$
Now,
$x+y+z=15, x^{2}+y^{2}+z^{2}=83$ and $x y+y z+x z=71$
So, $x^{3}+y^{3}+z^{3}-3 x y z=15(83-71)$
$=>x^{3}+y^{3}+z^{3}-3 x y z=15 \times 12$
Or, $x^{3}+y^{3}+z^{3}-3 x y z=180$

Question 15:Verify that:

(i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Answer 15:(i) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
We know that $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$

$$
\begin{aligned}
& \Rightarrow x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y) \\
& \Rightarrow x^{3}+y^{3}=(x+y)\left[(x+y)^{2}-3 x y\right]
\end{aligned}
$$

Taking $(x+y)$ common $\Rightarrow x^{3}+y^{3}=(x+y)\left[\left(x^{2}+y^{2}+2 x y\right)-3 x y\right]$

$$
\Rightarrow x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right)
$$

(ii) $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

We know that $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$

$$
\begin{aligned}
& \Rightarrow x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y) \\
& \Rightarrow x^{3}-y^{3}=(x-y)\left[(x-y)^{2}+3 x y\right]
\end{aligned}
$$

Taking $(x+y)$ common $\Rightarrow x^{3}-y^{3}=(x-y)\left[\left(x^{2}+y^{2}-2 x y\right)+3 x y\right]$

$$
\Rightarrow x^{3}+y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)
$$

Question 16: For what value of m is $?^{3}-2 ? ?^{2}+16$ divisible by $x+2 ?$
Answer 16: According to the question,
Let $p(x)=x^{3}-2 m x^{2}+16$, and $g(x)=x+2$
$g(x)=0$
$\Rightarrow x+2=0$
$\Rightarrow x=-2$

Hence, zero of $g(x)=-2$
As per the factor theorem,
if $p(x)$ is divisible by $g(x)$, then the remainder of $p(-2)$ should be zero.
Thus, substituting the value of x in $p(x)$, we obtain,
$p(-2)=0$
$\Rightarrow(-2)^{3}-2 m(-2)^{2}+16=0$
$\Rightarrow 0-8-8 m+16=0$
$\Rightarrow 8 \mathrm{~m}=8$
$\Rightarrow \mathrm{m}=1$
Question 17:If $a+b+c=15$ and $a^{2}+b^{2}+c^{2}=83$, find the value of $a^{3}+b^{3}+c^{3}-3 a b c$.
Answer 17: We know that,

$$
\begin{align*}
& a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) \\
& (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a \ldots(i i) \tag{ii}
\end{align*}
$$

Given, $a+b+c=15$ and $a^{2}+b^{2}+c^{2}=83$
From (ii), we have
$152=83+2(a b+b c+c a)$
$\Rightarrow 225-83=2(a b+b c+c a)$
$\Rightarrow 142 / 2=a b+b c+c a$
$\Rightarrow \mathrm{ab}+\mathrm{bc}+\mathrm{ca}=71$
Now, (i) can be written as
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left[\left(a^{2}+b^{2}+c^{2}\right)-(a b+b c+c a)\right]$
$a^{3}+b^{3}+c^{3}-3 a b c=15 \times[83-71]=15 \times 12=180$.
Question 18: Factorise: $27 x^{3}+y^{3}+z^{3}-9 x y z$
Answer 18: The expression $27 x^{3}+y^{3}+z^{3}-9 x y z$ can be written as $(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)$
$27 x^{3}+y^{3}+z^{3}-9 x y z=(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)$
We know that $x^{3}+y^{3}+{ }^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$27 x^{3}+y^{3}+z^{3}-9 x y z=(3 x)^{3}+y^{3}+z^{3}-3(3 x)(y)(z)$
$=(3 x+y+z)\left[(3 x)^{2}+y^{2}+z^{2}-3 x y-y z-3 x z\right]$
$=(3 x+y+z)\left(9 x^{2}+y^{2}+{ }^{2}-3 x y-y z-3 x z\right)$
Question 19: If $(x-1 / x)=4$, then evaluate $\left(x^{2}+1 / x^{2}\right)$ and $\left(x^{4}+1 / x^{4}\right)$.
Answer 19: Given, $(x-1 / x)=4$
Squaring both sides, we get,
$(x-1 / x)^{2}=16$
$\Rightarrow x^{2}-2 \cdot x \cdot 1 / x+1 / x^{2}=16$
$\Rightarrow x^{2}-2+1 / x^{2}=16$
$\Rightarrow x^{2}+1 / x^{2}=16+2=18$
$\therefore\left(x^{2}+1 / x^{2}\right)=18$
Again, squaring both sides of (i), we get
$\left(x^{2}+1 / x^{2}\right)^{2}=324$
$\Rightarrow x^{4}+2 \cdot x^{2} \cdot 1 / x^{2}+1 / x^{4}=324$
$\Rightarrow x^{4}+2+1 / x^{4}=324$
$\Rightarrow x^{4}+1 / x^{4}=324-2=322$
$\therefore\left(x^{4}+1 / x^{4}\right)=322$.

Question 20: Factorise

$64 m^{3}-343 n^{3}$
Answer 20: The expression $64 m^{3}-343 n^{3}$ can be written as $(4 m)^{3}-(7 n)^{3}$
$64 m^{3}-343 n^{3}=(4 m)^{3}-(7 n)^{3}$
We know that $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
$64 m^{3}-343 n^{3}=(4 m)^{3}-(7 n)^{3}$
$=(4 m-7 n)\left[(4 m)^{2}+(4 m)(7 n)+(7 n)^{2}\right]$
$=(4 m-7 n)\left(16 m^{2}+28 m n+49 n^{2}\right)$
Question 21: Find out the values of a and b so that $\left(2 x^{3}+a x^{2}+x+b\right)$ has $(x+2)$ and $(2 x-1)$ as factors.

Answer 21: Let $p(x)=2 x^{3}+a x^{2}+x+b$. Then, $p(-2)=$ and $p(1 / 2)=0$.
$p(2)=2(2)^{3}+a(2)^{2}+2+b=0$
$\Rightarrow-16+4 \mathrm{a}-2+\mathrm{b}=0 \Rightarrow 4 \mathrm{a}+\mathrm{b}=18$
$p(1 / 2)=2(1 / 2)^{3}+a(1 / 2)^{2}+(1 / 2)+b=0$
$\Rightarrow a+4 b=-3$
On solving (i) and (ii), we get $\mathrm{a}=5$ and $\mathrm{b}=-2$.

Hence, $\mathrm{a}=5$ and $\mathrm{b}=-2$.

Question 22: Explain that $p-1$ is a factor of $p^{10}-1$ and $p^{11}-1$.

Answer 22: According to the question,
Let $h(p)=?^{10}-1$, and $g(p)=?-1$
zero of $g(p) \Rightarrow g(p)=0$
$p-1=0$
$p=1$
Therefore, zero of $g(x)=1$
We know that,

According to the factor theorem, if $g(p)$ is a factor of $h(p)$, then $h(1)$ should be zero So,
$h(1)=(1)^{10}-1=1-1=0$
$\Rightarrow g(p)$ is a factor of $h(p)$.
Here, we have $h(p)=?^{11}-1, g(p)=?-1$
Putting $g(p)=0 \Rightarrow$? $-1=0 \Rightarrow$? $=1$
As per the factor theorem, if $g(p)$ is a factor of $h(p)$,
Then $h(1)=0$
$\Rightarrow(1)^{11}-1=0$
Hence, $g(p)=?-1$ is the factor of $h(p)=?{ }^{10}-1$
Question 23: Examine whether $(7+3 x)$ is a factor of $(3 \times 3+7 x)$.
Answer 23: Let $p(x)=3 \times 3+7 x$ and $g(x)=7+3 x$. Now $g(x)=0 \Rightarrow x=-7 / 3$.
By the remainder theorem, $p(x)$ is divided by $g(x)$, and then the remainder is $p(-7 / 3)$.
Now, $p(-7 / 3)=3(-7 / 3) 3+7(-7 / 3)=-490 / 9 \neq 0$.
$\therefore \mathrm{g}(\mathrm{x})$ is not a factor of $\mathrm{p}(\mathrm{x})$.

Question 24:Prove that:

$x^{3}+y^{3}+z^{3}-3 x y z=(1 / 2)(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$
Answer 24: We know that,

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right) \\
& \Rightarrow x^{3}+y^{3}+z^{3}-3 x y z=(1 / 2)(x+y+z)\left[2\left(x^{2}+y^{2}+z^{2}-x y-y z-x z\right)\right] \\
& =(1 / 2)(x+y+z)\left(2 \times 2+2 y^{2}+^{2}-2 x y-2 y z-2 x z\right) \\
& =(1 / 2)(x+y+z)\left[\left(x^{2}+y^{2}-2 x y\right)+\left(y^{2}+z^{2}-2 y z\right)+\left(x^{2}+z^{2}-2 x z\right)\right] \\
& =(1 / 2)(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]
\end{aligned}
$$

Question 25: Find out which of the following polynomials has $\mathbf{x - 2}$ a factor:
(i) $3 ?^{2}+6 ?-24$.
(ii) $4 \boldsymbol{?}^{2}+\boldsymbol{?}-2$.

Answer 25: (i) According to the question,
Let $p(x)=3 ?^{2}+6 ?-24$ and $g(x)=x-2$
$g(x)=x-2$
zero of $g(x) \Rightarrow g(x)=0$
$x-2=0$
$x=2$
Hence, zero of $g(x)=2$
Thus, substituting the value of x in $p(x)$, we get,

$$
\begin{aligned}
& \mathrm{p}(2)=3(2)^{2}+6(2)-24 \\
& =12+12-24 \\
& =0
\end{aligned}
$$

the remainder = zero,
We can derive that,
$g(x)=x-2$ is factor of $p(x)=3 ?^{2}+6 ?-24$
(ii) According to the question,

Let $p(x)=4 ?^{2}+?-2$ and $g(x)=x-2$
$g(x)=x-2$
zero of $g(x) \Rightarrow g(x)=0$
$x-2=0$
$x=2$
Hence, zero of $g(x)=2$
Thus, substituting the value of x in $p(x)$, we get,
$p(2)=4(2)^{2}+2-2$
$=16 \neq 0$

Since the remainder \neq zero,
We can say that,
$g(x)=x-2$ is not a factor of $p(x)=4 ?^{2}+?-2$
Question 26: Factorise $x^{2}+1 / x^{2}+2-2 x-2 / x$.
Answer 26: $x^{2}+1 / x^{2}+2-2 x-2 / x=\left(x^{2}+1 / x^{2}+2\right)-2(x+1 / x)$
$=(x+1 / x)^{2}-2(x+1 / x)$
$=(x+1 / x)(x+1 / x-2)$.

Question 27: Factorise

$8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$

Answer 27: The expression, $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$ can be written as $(2 a)^{3}+b^{3}+3(2 a)^{2} b+3(2 a)$ (b) ${ }^{2}$
$8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}=(2 a)^{3}+b^{3}+3(2 a)^{2} b+3(2 a)(b)^{2}$
$=(2 a+b)^{3}$
$=(2 a+b)(2 a+b)(2 a+b)$
Here, the identity, $(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)$ is used.
Question 28: By Remainder Theorem, find out the remainder when $p(x)$ is divided by $g(x)$, where
(i) $p(?)=?^{3}-2 ?^{2}-4 ?-1, g(?)=?+1$
(ii) $p(?)=?^{3}-3 ?^{2}+4 ?+50, g(?)=?-3$
(iii) $p(?)=4 ?^{3}-12 ?^{2}+14 ?-3, g(?)=2 ?-1$
(iv) $p(?)=?^{3}-6 ?^{2}+2 ?-4, g(?)=1-3 / 2$?

Answer 28: (i) Given $p(x)=?^{3}-2 ?^{2}-4 ?-1$ and $g(x)=x+1$
Here zero of $g(x)=-1$
By applying the remainder theorem
$P(x)$ divided by $g(x)=p(-1)$
$P(-1)=(-1)^{3}-2(-1)^{2}-4(-1)-1=0$
Therefore, the remainder $=0$
(ii) given $p(?)=?^{3}-3 ?^{2}+4 ?+50, g(?)=?-3$

Here zero of $g(x)=3$
By applying the remainder theorem $p(x)$ divided by $g(x)=p(3)$
$p(3)=3^{3}-3 \times(3)^{2}+4 \times 3+50=62$
Therefore, the remainder $=62$
(iii) $p(x)=4 x^{3}-12 x^{2}+14 x-3, g(x)=2 x-1$

Here zero of $g(x)=1 / 2$
By applying the remainder theorem $p(x)$ divided by $g(x)=p(1 / 2)$

$$
\begin{aligned}
P(1 / 2) & =4(1 / 2)^{3}-12(1 / 2)^{2}+14(1 / 2)-3 \\
& =4 / 8-12 / 4+14 / 2-3
\end{aligned}
$$

$$
\begin{aligned}
& =1 / 2+1 \\
& =3 / 2
\end{aligned}
$$

Hence, the remainder $=3 / 2$
(iv) $p(?)=?^{3}-6 ?^{2}+2 ?-4, g(?)=1-3 / 2 ?$
so, zero of $g(x)=2 / 3$
By applying the remainder theorem $p(x)$ divided by $g(x)=p(2 / 3)$
$p(2 / 3)=(2 / 3)^{3}-6(2 / 3)^{2}+2(2 / 3)-4$
$=-136 / 27$
Therefore, the remainder $=-136 / 27$

Question 29:Factorise $x^{2}-1-2 a-a^{2}$.
Answer 29: $x^{2}-1-2 a-a^{2}=x^{2}-\left(1+2 a+a^{2}\right)$
$=x^{2}-(1+a)^{2}$
$=[x-(1-a)][x+1+a]$
$=(x-1-a)(x+1+a)$
$\therefore x^{2}-1-2 a-a^{2}=(x-1-a)(x+1+a)$.

Question 30 :Evaluate the following using suitable identity

$(998)^{3}$
Answer 30: We can write 99 as 1000-2
Using identity, $(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)$
$(998)^{3}=(1000-2)^{3}$
$=(1000)^{3}-2^{3}-(3 \times 1000 \times 2)(1000-2)$
$=1000000000-8-6000(1000-2)$
$=1000000000-8-6000000+12000$
$=994011992$

Question 31: Find the zeroes of the polynomial:
$p(?)=(?-2)^{2}-(?+2)^{2}$
Answer 31: $\mathrm{p}(\mathrm{x})=(?-2)^{2}-(?+2)^{2}$
We know that,

Zero of the polynomial $p(x)=0$
Hence, we get,
$\Rightarrow(x-2)^{2}-(x+2)^{2}=0$
Expanding using the identity, $\mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})$
$\Rightarrow(x-2+x+2)(x-2-x-2)=0$
$\Rightarrow 2 x(-4)=0$
$\Rightarrow-8 x=0$

Therefore, the zero of the polynomial $=0$

