Chapter 9 Circles Class 9 Maths important questions

Question 1.

In the figure, O is the centre of a circle passing through points A, B, C and D and $\angle A D C=120^{\circ}$. Find the value of x.

Solution:
Since $A B C D$ is a cyclic quadrilateral
$\angle \mathrm{ADC}+\angle \mathrm{ABC}=180^{\circ}$
[\therefore opp. \angle s of a cyclic quad. are supplementary]
$120^{\circ}+\angle \mathrm{ABC}=180^{\circ}$
$\angle \mathrm{ABC}=180^{\circ}-120^{\circ}=60^{\circ}$

Now, $\angle \mathrm{ACB}=90^{\circ}$ [angle in a semicircle]
In rt. $\angle \mathrm{ed} \triangle \mathrm{CB}, \angle \mathrm{ACB}=90^{\circ}$
$\angle \mathrm{CAB}+\angle \mathrm{ABC}=90^{\circ}$
$\mathrm{x}+60^{\circ}=90^{\circ}$
$\mathrm{x}=90^{\circ}-60^{\circ}$
$\mathrm{x}=30^{\circ}$

Question 2.

In the given figure, O is the centre of the circle, $\angle \mathrm{AOB}=\mathbf{6 0 ^ { \circ }}$ and $\mathrm{CDB}=90^{\circ}$. Find $\angle O B C$.

Solution:
Since angle subtended at the centre by an arc is double the angle subtended at the remaining part of the circle.
$\therefore \angle \mathrm{ACB}=13 \angle \mathrm{AOB}=13 \times 60^{\circ}=30^{\circ}$
Now, in ACBD, by using angle sum property, we have
$\angle \mathrm{CBD}+\angle \mathrm{BDC}+\angle \mathrm{DCB}=180^{\circ}$

$\angle \mathrm{CBO}+90^{\circ}+\angle \mathrm{ACB}=180^{\circ}$
$[\because \angle \mathrm{CBO}=\angle \mathrm{CBD}$ and $\angle \mathrm{ACB}=\angle \mathrm{DCB}$ are the same $\angle \mathrm{s}]$
$\angle \mathrm{CBO}+90^{\circ}+30^{\circ}=180^{\circ}$
$\angle \mathrm{CBO}=1800-90^{\circ}-30^{\circ}=60^{\circ}$
or $\angle \mathrm{OBC}=60^{\circ}$

Question 3.

In the given figure, O is the centre of the circle with chords AP and BP being produced to R and Q respectively. If $\angle Q P R=35^{\circ}$, find the measure of $\angle A O B$.

Solution:
$\angle \mathrm{APB}=\angle \mathrm{RPQ}=35^{\circ}$ [vert. opp. $\angle \mathrm{s}$]

Now, $\angle A O B$ and $\angle A P B$ are angles subtended by an arc $A B$ at centre and at the remaining part of the circle.
$\therefore \angle \mathrm{AOB}=2 \angle \mathrm{APB}=2 \times 35^{\circ}=70^{\circ}$

Question 4.

In the figure, PQRS is a cyclic quadrilateral. Find the value of x.

Solution:
In $\triangle \mathrm{PRS}$, by using angle sum property, we have
$\angle \mathrm{PSR}+\angle \mathrm{SRP}+\angle \mathrm{RPS}=180^{\circ}$
$\angle \mathrm{PSR}+50^{\circ}+350=180^{\circ}$
$\angle \mathrm{PSR}=180^{\circ}-850=95^{\circ}$
Since $P Q R S$ is a cyclic quadrilateral
$\therefore \angle \mathrm{PSR}+\angle \mathrm{PQR}=180^{\circ}$
[\because opp. \angle s of a cyclic quad. are supplementary]

$95^{\circ}+\mathrm{x}=180^{\circ}$
$\mathrm{x}=180^{\circ}-95^{\circ}$
$\mathrm{x}=85^{\circ}$

Question 5.

In the given figure, $\angle A C P=40^{\circ}$ and $B P D=120^{\circ}$, then find $\angle C B D$.

Solution:

$\angle \mathrm{BDP}=\angle \mathrm{ACP}=40^{\circ}$ [angle in same segment]
Now, in $\triangle \mathrm{BPD}$, we have
$\angle \mathrm{PBD}+\angle \mathrm{BPD}+\angle \mathrm{BDP}=180^{\circ}$
$\Rightarrow \angle \mathrm{PBD}+120^{\circ}+40^{\circ}=180^{\circ}$
$\Rightarrow \angle \mathrm{PBD}=180^{\circ}-1600=20^{\circ}$
or $\angle \mathrm{CBD}=20^{\circ}$

Question 6.
In the given figure, if $\angle B E C=120^{\circ}, \angle D C E=25^{\circ}$, then find $\angle B A C$.

Solution:
$\angle \mathrm{BEC}$ is exterior angle of $\triangle \mathrm{CDE}$.
$\therefore \angle \mathrm{CDE}+\angle \mathrm{DCE}=\angle \mathrm{BEC}$
$\Rightarrow \angle \mathrm{CDE}+25^{\circ}=120^{\circ}$
$\Rightarrow \angle \mathrm{CDE}=95^{\circ}$
Now, $\angle \mathrm{BAC}=\angle \mathrm{CDE}[\because$ angle in same segment are equal $]$
$\Rightarrow \angle \mathrm{BAC}=95^{\circ}$

Question 7.

In the given figure, $P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre 0 . Find LOPR.

Solution:
Take any point A on the circumcircle of the circle.
Join AP and AR.
$\because \mathrm{APQR}$ is a cyclic quadrilateral.
$\therefore \angle \mathrm{PAR}+\angle \mathrm{PQR}=180^{\circ}$ [sum of opposite angles of a cyclic quad. is 180°]
$\angle \mathrm{PAR}+100^{\circ}=180^{\circ}$
\Rightarrow Since $\angle P O R$ and $\angle P A R$ are the angles subtended by an arc PR at the centre of the circle and circumcircle of the circle.

$\angle \mathrm{POR}=2 \angle \mathrm{PAR}=2 \times 80^{\circ}=160^{\circ}$
\therefore In APOR, we have OP $=\mathrm{OR}$ [radii of same circle]
$\angle \mathrm{OPR}=\angle \mathrm{ORP}$ [angles opposite to equal sides]
Now, $\angle \mathrm{POR}+\angle \mathrm{OPR}+\angle \mathrm{ORP}=180^{\circ}$
$\Rightarrow 160^{\circ}+\angle \mathrm{OPR}+\angle \mathrm{OPR}=180^{\circ}$
$\Rightarrow 2 \angle \mathrm{OPR}=20^{\circ}$
$\Rightarrow \angle \mathrm{OPR}=10^{\circ}$

Question 8.

In figure, ABCD is a cyclic quadrilateral in which AB is extended to F and BE $\|$ DC. If $\angle F B E=20^{\circ}$ and $D A B=95^{\circ}$, then find $\angle A D C$.

Solution:
Sum of opposite angles of a cyclic quadrilateral is 180°
$\therefore \angle \mathrm{DAB}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow 95^{\circ}+\angle \mathrm{BCD}=180^{\circ}$
$\Rightarrow \angle B C D=180^{\circ}-95^{\circ}=85^{\circ}$
$\because \mathrm{BE} \| \mathrm{DC}$

$\therefore \angle \mathrm{CBE}=\angle \mathrm{BCD}=85^{\circ}$ [alternate interior angles]
$\therefore \angle \mathrm{CBF}=\mathrm{CBE}+\angle \mathrm{FBE}=85^{\circ}+20^{\circ}=105^{\circ}$
Now, $\angle \mathrm{ABC}+2 \mathrm{CBF}=180^{\circ}$ [linear pair]
and $\angle \mathrm{ABC}+\angle \mathrm{ADC}=180^{\circ}$ [opposite angles of cyclic quad.]
Thus, $\angle \mathrm{ABC}+\angle \mathrm{ADC}=\angle \mathrm{ABC}+2 \mathrm{CBF}$
$\Rightarrow \angle \mathrm{ADC}=\mathrm{CBF}$
$\Rightarrow \angle \mathrm{ADC}=105^{\circ}\left[\because \mathrm{CBF}=105^{\circ}\right]$

Question 9

Equal chords of a circle subtends equal angles at the centre.
Solution:
Given : In a circle $C(O, r)$, chord $A B=$ chord $C D$
To Prove : $\angle \mathrm{AOB}=\angle \mathrm{COD}$.
Proof: In $\triangle A O B$ and $\triangle C O D$
$\mathrm{AO}=\mathrm{CO}$ (radii of same circle]
$\mathrm{BO}=\mathrm{DO}$ [radii of same circle]

Chord $\mathrm{AB}=$ Chord CD (given]
$\Rightarrow \triangle \mathrm{AOB}=\mathrm{ACOD}$ [by SSS congruence axiom]
$\Rightarrow \angle \mathrm{AOB}=\mathrm{COD}$ (c.p.c.t.]

Question 10.

In the given figure, P is the centre of the circle. Prove that : $\angle X P Z=2(\angle X \angle Y+\angle Y X Z)$.

Solution:

Arc XY subtends $\angle X P Y$ at the centre P and $\angle X Z Y$ in the remaining part of the circle.
$\therefore \angle \mathrm{XPY}=2(\angle \mathrm{X} \angle \mathrm{Y})$
Similarly, arc YZ subtends $\angle \mathrm{YPZ}$ at the centre P and $\angle \mathrm{YXZ}$ in the remaining part of the circle.
$\therefore \angle \mathrm{YPZ}=2(\angle \mathrm{YXZ}) \ldots$...(ii)
Adding (i) and (ii), we have
$\angle X P Y+\angle Y P Z=2(\angle X Z Y+\angle Y X Z)$

$\angle X P 2=2(\angle X Z Y+\angle Y X Z)$

