Chapter 9 Circles Class 9 Maths important questions

Question 1.

In the figure, O is the centre of a circle passing through points A, B, C and D and $\angle ADC = 120^{\circ}$. Find the value of x.

Solution:

Since ABCD is a cyclic quadrilateral

$$\angle ADC + \angle ABC = 180^{\circ}$$

[∴ opp. ∠s of a cyclic quad. are supplementary]

$$120^{\circ} + \angle ABC = 180^{\circ}$$

$$\angle ABC = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

Now, $\angle ACB = 90^{\circ}$ [angle in a semicircle]

In rt.
$$\angle$$
ed \triangle CB, \angle ACB = 90°

$$\angle CAB + \angle ABC = 90^{\circ}$$

$$x + 60^{\circ} = 90^{\circ}$$

$$x = 90^{\circ} - 60^{\circ}$$

$$x = 30^{\circ}$$

Question 2.

In the given figure, O is the centre of the circle, $\angle AOB = 60^{\circ}$ and CDB = 90° . Find $\angle OBC$.

Solution:

Since angle subtended at the centre by an arc is double the angle subtended at the remaining part of the circle.

$$\therefore$$
 \triangle ACB = 13 \triangle AOB = 13 x 60° = 30°

Now, in ACBD, by using angle sum property, we have

$$\angle$$
CBD + \angle BDC + \angle DCB = 180°

$$\angle$$
CBO + 90° + \angle ACB = 180°

[::
$$\angle$$
CBO = \angle CBD and \angle ACB = \angle DCB are the same \angle s]

$$\angle$$
CBO + 90° + 30° = 180°

$$\angle$$
CBO = 1800 - 90° - 30° = 60°

or
$$\angle OBC = 60^{\circ}$$

Question 3.

In the given figure, O is the centre of the circle with chords AP and BP being produced to R and Q respectively. If $\angle QPR = 35^{\circ}$, find the measure of $\angle AOB$.

Solution:

$$\angle APB = \angle RPQ = 35^{\circ} [vert. opp. \angle s]$$

Now, \angle AOB and \angle APB are angles subtended by an arc AB at centre and at the remaining part of the circle.

$$\therefore \angle AOB = 2\angle APB = 2 \times 35^{\circ} = 70^{\circ}$$

Question 4.

In the figure, PQRS is a cyclic quadrilateral. Find the value of x.

Solution:

In \triangle PRS, by using angle sum property, we have

$$\angle PSR + \angle SRP + \angle RPS = 180^{\circ}$$

$$\angle PSR + 50^{\circ} + 350 = 180^{\circ}$$

$$\angle PSR = 180^{\circ} - 850 = 95^{\circ}$$

Since PQRS is a cyclic quadrilateral

$$\therefore \angle PSR + \angle PQR = 180^{\circ}$$

[∵ opp. ∠s of a cyclic quad. are supplementary]

$$95^{\circ} + x = 180^{\circ}$$

$$x = 180^{\circ} - 95^{\circ}$$

$$x = 85^{\circ}$$

Question 5.

In the given figure, $\angle ACP = 40^{\circ}$ and BPD = 120°, then find $\angle CBD$.

Solution:

$$\angle BDP = \angle ACP = 40^{\circ}$$
 [angle in same segment]

Now, in $\triangle BPD$, we have

$$\angle PBD + \angle BPD + \angle BDP = 180^{\circ}$$

$$\Rightarrow$$
 \angle PBD + 120° + 40° = 180°

$$\Rightarrow \angle PBD = 180^{\circ} - 1600 = 20^{\circ}$$

or
$$\angle CBD = 20^{\circ}$$

Question 6.

In the given figure, if $\angle BEC = 120^{\circ}$, $\angle DCE = 25^{\circ}$, then find $\angle BAC$.

Solution:

 \angle BEC is exterior angle of \triangle CDE.

$$\therefore \angle CDE + \angle DCE = \angle BEC$$

$$\Rightarrow$$
 \angle CDE + 25° = 120°

$$\Rightarrow \angle CDE = 95^{\circ}$$

Now, $\angle BAC = \angle CDE$ [: angle in same segment are equal]

$$\Rightarrow \angle BAC = 95^{\circ}$$

Question 7.

In the given figure, $PQR = 100^{\circ}$, where P, Q and R are points on a circle with centre O. Find LOPR.

Solution:

Take any point A on the circumcircle of the circle. Join AP and AR.

- ∴ APQR is a cyclic quadrilateral.
- \therefore \angle PAR + \angle PQR = 180° [sum of opposite angles of a cyclic quad. is 180°]

$$\angle PAR + 100^{\circ} = 180^{\circ}$$

 \Rightarrow Since \angle POR and \angle PAR are the angles subtended by an arc PR at the centre of the circle and circumcircle of the circle.

$$\angle POR = 2 \angle PAR = 2 \times 80^{\circ} = 160^{\circ}$$

: In APOR, we have OP = OR [radii of same circle]

 $\angle OPR = \angle ORP$ [angles opposite to equal sides]

Now,
$$\angle POR + \angle OPR + \angle ORP = 180^{\circ}$$

$$\Rightarrow$$
 160° + \angle OPR + \angle OPR = 180°

$$\Rightarrow$$
 2 \angle OPR = 20°

$$\Rightarrow$$
 \angle OPR = 10°

In figure, ABCD is a cyclic quadrilateral in which AB is extended to F and BE || DC. If \angle FBE = 20° and DAB = 95°, then find \angle ADC.

Sum of opposite angles of a cyclic quadrilateral is 180°

$$\therefore \angle DAB + \angle BCD = 180^{\circ}$$

$$\Rightarrow$$
 95° + \angle BCD = 180°

$$\Rightarrow \angle BCD = 180^{\circ} - 95^{\circ} = 85^{\circ}$$

$$\therefore$$
 \angle CBE = \angle BCD = 85° [alternate interior angles]

$$\therefore$$
 \angle CBF = CBE + \angle FBE = 85° + 20° = 105°

Now,
$$\angle ABC + 2CBF = 180^{\circ}$$
 [linear pair]

and $\angle ABC + \angle ADC = 180^{\circ}$ [opposite angles of cyclic quad.]

Thus,
$$\angle ABC + \angle ADC = \angle ABC + 2CBF$$

$$\Rightarrow \angle ADC = CBF$$

$$\Rightarrow$$
 \angle ADC = 105° [:: CBF = 105°]

Equal chords of a circle subtends equal angles at the centre.

Solution:

Given: In a circle C(O, r), chord AB = chord CD

To Prove : $\angle AOB = \angle COD$. Proof : In $\triangle AOB$ and $\triangle COD$

AO = CO (radii of same circle]

BO = DO [radii of same circle]

20°

Chord AB = Chord CD (given]

- \Rightarrow \triangle AOB = ACOD [by SSS congruence axiom]
- $\Rightarrow \angle AOB = COD (c.p.c.t.]$

Question 10.

In the given figure, P is the centre of the circle. Prove that : $\angle XPZ = 2(\angle X\angle Y + \angle YXZ)$.

Arc XY subtends \angle XPY at the centre P and \angle XZY in the remaining part of the circle.

$$\therefore \angle XPY = 2(\angle X\angle Y)$$

Similarly, arc YZ subtends \angle YPZ at the centre P and \angle YXZ in the remaining part of the circle.

$$\therefore \angle YPZ = 2(\angle YXZ) \dots (ii)$$

Adding (i) and (ii), we have

$$\angle XPY + \angle YPZ = 2 (\angle XZY + \angle YXZ)$$

$$\angle XP2 = 2 (\angle XZY + \angle YXZ)$$

