Important Questions Class 9 Maths Chapter 11 Surface Areas and Volumes

1 Marks Quetions

1. If the perimeter of one of the faces of a cube is 40 cm , them its volume is
(a) $\mathbf{6 0 0 0} \mathrm{cu} \mathrm{cm}$
(b) 1600 cu cm
(c) 1000 cu cm
(d) 600 cu cm

Ans. (c) 1000 cu cm
2. A cuboid having surface areas of 3 adjacent faces $a s a, b$ and c has the volume
(a) $3 \sqrt{a b c}$
(b) $\sqrt{a b c}$
(c) abc
(d) $a^{3} b^{3} c^{3}$

Ans. (b) $\sqrt{a b c}$
3. The diameter of a right circular cylinder is 21 cm and its height is 8 cm . The Volume of the cylinder is
(a) 528 cu cm
(b) 1056 cu cm
(c) 1386 cu cm
(d) 2772 cu cm

Ans. (d) 2772 cu cm
4. Each edge of a cube is increased by 40%. The \% increase in the surface area is.
(a) 40
(b) 96
(c) 160
(d) 240

Ans. (b) 96
5. Find the curved (lateral) surface area of each of the following right circular cylinders:
(a) $2 \pi r h$
(b) $\pi r h$
(c) $2 \pi r(r+h)$
(d) None of these

Ans. (a) $2 \pi r h$
6. The radius and height of a right circular cylinder are each increased by 20%. The volume of cylinder is increased by-
(a) 20\%
(b) 40%
(c) 54%
(d) 72.8%

Ans. (d) 72.8\%
7. A well of diameter 8 meters has been dug to the depth of 21 m . the volume of the earth dug out is
(a) $\mathbf{1 0 5 6}$ cu m
(b) 352 cu m
(c) 1408 cu m
(d) 4224 cu m

Ans. (a) 1056 cu m
8. The radius of a cylinder is doubled and the height remains the same. The ratio between the volumes of the new cylinder and the original cylinder is
(a) $1: 2$
(b) $1: 3$
(c) $1: 4$
(d) $1: 8$

Ans. (c) 1:4
9. Length of diagonals of a cube of side a cm is
(i) $\sqrt{2} a \mathrm{~cm}$
(ii) $\sqrt{3} a \mathrm{~cm}$
(iii) $\sqrt{3 a} \mathrm{~cm}$
(iv) 1 cm

Ans. (ii) $\sqrt{3} a \mathrm{~cm}$
10. Surface area of sphere of diameter 14 cm is
(i) $616 \mathrm{~cm}^{2}$
(ii) $516 \mathrm{~cm}^{2}$
(iii) $400 \mathrm{~cm}^{2}$
(iv) $2244 \mathrm{~cm}^{2}$

Ans. (i) $616 \mathrm{~cm}^{2}$
11. Surface area of bowl of radius rcm is
(i) $4 \pi r^{2}$
(ii) $2 \pi r^{2}$
(iii) $3 \pi r^{2}$
(iv) πr^{2}

Ans. (iii) $3 \pi r^{2}$
12. Volume of a sphere whose radius 7 cm is
(i) $1437 \frac{1}{3} \mathrm{~cm}^{3}$
(ii) $1337 \frac{1}{3} \mathrm{~cm}^{3}$
(iii) $1430 \mathrm{~cm}^{3}$
(iv) $1447 \mathrm{~cm}^{3}$

Ans. (i) $1437 \frac{1}{3} \mathrm{~cm}^{3}$
13. The curved surface area of a right circular cylinder of height 14 cm is $88 \mathrm{~cm}^{2}$. find the diameter of the base of the cylinder
(i) 1 cm
(ii) 2 cm
(iii) 3 cm
(iv) 4 cm

Ans. (ii) 2 cm
14. Volume of spherical shell
(i) $\frac{2}{3} \pi r^{3}$
(ii) $\frac{3}{4} \pi r^{3}$
(iii) $\frac{4}{3} \pi\left[R^{3}-r^{3}\right]$
(iv) none of these

Ans. (iii) $\frac{4}{3} \pi\left[R^{3}-r^{3}\right]$
15. The area of the three adjacent faces of a cuboid are x, y, z. Its volume is V, then
(i) $V=x y z$
(ii) $V^{2}=x y z$
(iii) $V=x^{2} y^{2} z^{2}$
(iv) none of these

Ans. (ii) $V^{2}=x y z$
16. A conical tent is 10 m high and the radius of its base is 24 m then slant height of the tent is
(i) $\mathbf{2 6}$
(ii) 27
(iii) 28
(iv) 29

Ans. (i) 26
17. Volume of hollow cylinder
(i) $\pi\left(R^{2}-r^{2}\right) h$
(ii) $\pi R^{2} h$
(iii) $\pi r^{2} h$
(iv) $\pi r^{2}\left(h_{1}-h_{2}\right)$

Ans. (i) $\pi\left(R^{2}-r^{2}\right) h$
18. Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm . then curved surface area.
(i) $\mathbf{1 5 5} \mathrm{cm}^{2}$
(ii) $\mathbf{1 6 5} \mathrm{cm}^{2}$
(iii) $\mathbf{1 5 0} \mathrm{cm}^{2}$
(iv) none of these

Ans. (ii) $165 \mathrm{~cm}^{2}$
19. The surface area of a sphere of radius 5.6 cm is
(i) $96.8 \mathrm{\pi cm}^{2}$
(ii) $94.08 \mathrm{\pi cm}^{2}$
(iii) $90.08 \mathrm{\pi cm}^{2}$
(iv) none of these

Ans. (ii) $94.08 \pi \mathrm{~cm}^{2}$
20. The height and the slant height of a cone are 21 cm and 28 cm respectively then volume of cone
(i) $\mathbf{7 5 5 6} \mathrm{cm}^{3}$
(ii) $7646 \mathrm{~cm}^{3}$
(iii) $7546 \mathrm{~cm}^{3}$
(iv) none of these

Ans. (c) $7546 \mathrm{~cm}^{3}$

2 Marks Quetions

1. A plastic box 1.5 m long, 1.25 m wide and 65 cm deep is to be made. It is to be open at the top. Ignoring the thickness of the plastic sheet, determine:
(i) The area of the sheet required for making the box.
(ii) The cost of sheet for it, if a sheet measuring $1 \mathrm{~m}^{2}$ cost Rs. 20.

Ans. (i) Given: Length $(l)=1.5 \mathrm{~m}$, Breadth $(b)=1.25 \mathrm{~m}$ and Depth $(h)=65 \mathrm{~cm}=0.65$ m

Area of the sheet required for making the box open at the top $=2(b h+h l)+l b$
$=$

$$
2(1.25 \times 0.65+0.65 \times 1.5)+1.5 \times 1.25
$$

$=$

$$
2(0.8125+0.975)+1.875
$$

=

$$
2 \times 1.7875+1.875
$$

$=3.575+1.875$
$=5.45 \mathrm{~m}^{2}$
(ii) Since, Cost of $1 \mathrm{~m}^{2}$ sheet $=$ Rs. 20
\therefore Cost of $5.45 \mathrm{~m}^{2}$ sheet $=20 \times 5.45=$ Rs. 109
2. The length, breadth and height of a room are $5 \mathrm{~m}, 4 \mathrm{~m}$ and 3 m respectively. Find the cost of white washing the walls of the room and the ceiling at the rate of Rs. 7.50 per m^{2}.

Ans. Given: Length $(l)=5 \mathrm{~m}$, Breadth $(b)=4 \mathrm{~m}$ and Height $(h)=3 \mathrm{~m}$
\because Area of the four walls = Lateral surface area $=2(b h+h l)=2 h(b+l)$

$$
\begin{aligned}
& =2 \times 3(4+5) \\
& =2 \times 9 \times 3=54 \mathrm{~m}^{2}
\end{aligned}
$$

Area of ceiling $=l \times b=5 \times 4=20 \mathrm{~m}^{2}$
\therefore Total area of walls and ceiling of the room $=54+20=74 \mathrm{~m}^{2}$
Now Cost of white washing for $1 m^{2}=$ Rs. 7.50
\therefore Cost of white washing for $74 \mathrm{~m}^{2}=74 \times 7.50=$ Rs. 555
3. The floor of a rectangular hall has a perimeter 250 m . If the cost of painting the four walls at the rate of Rs. 10 per m^{2} is Rs. 15000 , find the height of the hall.

Ans. Given: Perimeter of rectangular wall $=2(l+b)=250 \mathrm{~m}$ \qquad

Now Area of the four walls of the room
$=$
Total cost to paint walls of the room
Cost to paint $1 \mathrm{~m}^{2}$ of the walls
$=\frac{15000}{10}=1500 \mathrm{~m}^{2}$
\because Area of the four walls = Lateral surface area $=2(b h+h l)=2 h(b+l)=1500$
$\Rightarrow \quad 250 \times h=1500$ [using eq. (i) and (ii)
$\Rightarrow h=\frac{1500}{250}=6 \mathrm{~m}$
Hence required height of the hall is 6 m .
4. The paint in a certain container is sufficient to paint an area equal to $9.375 \mathrm{~m}^{2}$. How many bricks of dimensions

$$
22.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 7.5 \mathrm{~cm}
$$

can be painted out of this container?
Ans. Given: Length of the brick $(l)=22.5 \mathrm{~cm}$, Breadth $(b)=10 \mathrm{~cm}$ and Height $(h)=7.5$ m
\therefore Surface area of the brick $=2(l b+b h+h l)$

$$
=2(22.5 \times 10+10 \times 7.5+7.5 \times 22.5)
$$

$=2(225+75+468.75)$
$=937.5 \mathrm{~cm}^{2}$
$=0.09375 \mathrm{~m}^{2} 1 \mathrm{~cm}=0.01 \mathrm{~m}$
Now No. of bricks to be painted
$=$
$\frac{\text { Total area to be painted }}{\text { Area of one brick }}$
$=\frac{9.375}{0.09375}=100$
Hence 100 bricks can be painted.
5. A cubical box has each edge 10 cm and a cuboidal box is 10 cm wide, 12.5 cm long and 8 cm high.
(i) Which box has the greater lateral surface area and by how much?
(ii) Which box has the smaller total surface area and how much?

Ans. (i) Lateral surface area of a cube

$$
=4(\text { side })^{2}=4 \times(10)^{2}
$$

$$
=400 \mathrm{~cm}^{2}
$$

Lateral surface area of a cuboid $=2 h(l+b)$

$$
\begin{aligned}
= & 2 \times 8(12.5+10) \\
= & 16 \times 22.5=360 \mathrm{~cm}^{2}
\end{aligned}
$$

\therefore Lateral surface area of cubical box is greater by $(400-360)=40 \mathrm{~cm}^{2}$
(ii) Total surface area of a cube

$$
=6(\text { side })^{2}=6 \times(10)^{2}
$$

$$
=600 \mathrm{~cm}^{2}
$$

Total surface area of cuboid $=2(l b+b h+h l)$

$$
=2(12.5 \times 10+10 \times 8+8 \times 12.5)
$$

$=2(125+80+100)$

$$
=2 \times 305=610 \mathrm{~cm}^{2}
$$

\therefore Total surface area of cuboid box is greater by $(610-600)=10 \mathrm{~cm}^{2}$
6. Parveen wanted to make a temporary shelter for her car, by making a box-like structure with tarpaulin that covers all the four sides and the top of the car (with the front face as a flap which can be rolled up). Assuming that the stitching margins are very small and therefore negligible, how much tarpaulin would be required to make the shelter of height 2.5 m with base simensions $4 \mathrm{~m} \times 3 \mathrm{~m}$?

Ans. Given: Length of base $(l)=4 \mathrm{~m}$, Breadth $(b)=3 \mathrm{~m}$ and Height $(h)=2.5 \mathrm{~m}$
Tarpaulin required to make shelter $=$ Surface area of 4 walls + Area of roof
$=2 h(l+b)+l b$

$$
=2(4+3) 2.5+4 \times 3
$$

$=35+12$
$=47 \mathrm{~m}^{2}$
Hence $47 \mathrm{~m}^{2}$ of the tarpaulin is required to make the shelter for the car.
7. The curved surface area of a right circular cylinder of height 14 cm is $88 \mathrm{~cm}^{2}$. Find the diameter of the base of the cylinder.

Ans. Given: Height of cylinder $(h)=14 \mathrm{~cm}$, Curved Surface Area $=88 \mathrm{~cm}^{2}$
Let radius of base of right circular cylinder $=r \mathrm{~cm}$

$$
\begin{aligned}
& 2 \pi r h=88 \\
& \Rightarrow \\
& \\
& \Rightarrow \\
& \Rightarrow \quad 2 \times \frac{22}{7} \times r \times 14=88 \\
& \Rightarrow r=88 \times \frac{7}{22} \times \frac{1}{14} \times \frac{1}{2} \\
& \Rightarrow r=1 \mathrm{~cm}
\end{aligned}
$$

Diameter of the base of the cylinder $=2 r=2 \times 1=2 \mathrm{~cm}$
8. It is required to make a closed cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square meters of the sheet are required for the same?

Ans. Given: Diameter $=140 \mathrm{~cm}$
\Rightarrow Radius $(r)=70 \mathrm{~cm}=0.7 \mathrm{~m}$
Height of the cylinder $(h)=1 \mathrm{~m}$
Total Surface Area of the cylinder $=2 \pi r(r+h)=$

$$
\begin{aligned}
& 2 \times \frac{22}{7} \times 0.7(0.7+1) \\
= & 2 \times 22 \times 0.1 \times 1.7=7.48 \mathrm{~m}^{2}
\end{aligned}
$$

Hence $7.48 \mathrm{~m}^{2}$ metal sheet is required to make the close cylindrical tank.
9. The diameter of a roller is 84 cm and its length is 120 cm . It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in m^{2}.

Ans. Diameter of roller $=84 \mathrm{~cm}$
\Rightarrow Radius of the roller $=42 \mathrm{~cm}$

Length (Height) of the roller $=120 \mathrm{~cm}$
Curved surface area of the roller $=2 \pi r h$
=

$$
2 \times \frac{22}{7} \times 42 \times 120
$$

$=31680 \mathrm{~cm}^{2}$
\because Now area leveled by roller in one revolution $=31680 \mathrm{~cm}^{2}$
\therefore Area leveled by roller in 500 revolutions

$$
=3.1680 \times 500
$$

$=1584.0000=1584 \mathrm{~m}^{2}$
10. A cylindrical pillar is 50 cm in diameter and 3.5 m in height. Find the cost of white washing the curved surface of the pillar at the rate of Rs. 12.50 per m^{2}.

Ans. Diameter of pillar $=50 \mathrm{~cm}$
\Rightarrow Radius of pillar $=25 \mathrm{~cm}=\frac{25}{100}=\frac{1}{4} \mathrm{~m}$
Height of the pillar $=3.5 \mathrm{~m}$

Now, Curved surface area of the pillar $=2 \pi r h=2 \frac{22}{7} \times \frac{1}{4} \times 3.5=\frac{11}{2} m^{2}$
\because Cost of white washing $1 m^{2}=$ Rs. 12.50
\therefore Cost of white washing $\frac{11}{2} m^{2}=\frac{11}{2} \times 12.50=$ Rs. 68.75
11. Curved surface area of a right circular cylinder is $4.4 \mathrm{~m}^{2}$. If the radius of the base of the cylinder is 0.7 m , find its height.

Ans. Curved surface area of the cylinder $=4.4 \mathrm{~m}^{2}$, Radius of cylinder $=0.7 \mathrm{~m}$
Let height of the cylinder $=h$

$$
\begin{aligned}
& \therefore \quad 2 \pi r h=4.4 \\
& \Rightarrow \\
& \qquad 2 \times \frac{22}{7} \times 0.7 \times h=4.4 \\
& \Rightarrow \\
& \qquad h=4.4 \times 7 \times \frac{1}{22} \times \frac{1}{2} \\
& \Rightarrow h=1 \mathrm{~m}
\end{aligned}
$$

12. The inner diameter of a circular well is 3.5 m . It is 10 m deep. Find:
(i) its inner curved surface area.
(ii) the cost of plastering this curved surface at the rate of Rs. 40 per m^{2}.

Ans. Inner diameter of circular well $=3.5 \mathrm{~m}$
\therefore Inner radius of circular well $=\frac{3.5}{2}=1.75 \mathrm{~m}$
And Depth of the well $=10 \mathrm{~m}$
(i) Inner surface area of the well $=2 \pi r h$
=

$$
2 \times \frac{22}{7} \times 1.75 \times 10
$$

$=110 \mathrm{~m}^{2}$
(ii) Cost of plastering $1 \mathrm{~m}^{2}=$ Rs. 40

Cost of plastering $100 \mathrm{~m}^{2}=40 \times 110=$ Rs. 4400
13. In a hot water heating system, there is a cylindrical piping of length 28 m and diameter 5 cm . Find the total radiating surface in the system.

Ans. The length (height) of the cylindrical pipe $=28 \mathrm{~m}$

Diameter $=5 \mathrm{~cm}$
\Rightarrow Radius $=\frac{5}{2} \mathrm{~cm}$
\therefore Curved surface area of the pipe $=2 \pi r h=$

$$
2 \times \frac{22}{7} \times \frac{5}{2} \times 2800
$$

$=44000 \mathrm{~cm}^{2}=\frac{44000}{10000}=4.4 \mathrm{~m}^{2}$
14. In the adjoining figure, you see the frame of a lampshade. It is to be covered with a decorative cloth. The frame has a base diameter of 20 cm and height of 30 cm . A margin of 2.5 cm is to be given for folding it over the top and bottom of the frame. Find how much cloth is required for covering the lampshade. Seefig .

Ans. Height of each of the folding at the top and bottom $(h)=2.5 \mathrm{~cm}$
Height of the frame $(\mathrm{H})=30 \mathrm{~cm}$

```
Diameter = 20 cm
# Radius = 10 cm
Now cloth required for covering the lampshade
= CSA of top part + CSA of middle part + CSA of bottom part
=
    2\pirh+2\pir\textrm{H}+2\pirh
    2\pir(h+H+h)
= 2\pirr(H+2h)
=
    2\frac{22}{7}\times10(30+2\times2.5)
    =2200 cm
```

15. The students of a Vidyalayawere asked to participate in a competition for making and decorating penholders in the shape of a cylinder with a base, using cardboard. Each penholder was to be of radius 3 cm and height 10.5 cm . The Vidyalaya was to supply the competitors with cardboard. If there were 35 competitors, how much cardboard was required to be bought for the competition?

Ans. Radius of a cylindrical pen holder $(r)=3 \mathrm{~cm}$

Height of the cylindrical pen holder $(h)=10.5 \mathrm{~cm}$
Cardboard required for pen holder $=$ CSA of pen holder + Area of circular base

$$
\begin{aligned}
& =2 \pi r h+\pi r^{2}=\pi r(2 h+r) \\
& = \\
& =226.28 \mathrm{~cm}^{2}
\end{aligned}
$$

Since Cardboard required for making 1 pen holder $=226.28 \mathrm{~cm}^{2}$
\therefore Cardboard required for making 35 pen holders

$$
=226.28 \times 35=7919.8 \mathrm{~cm}^{2}
$$

$=7920 \mathrm{~cm}^{2}$ (approx.)
16. Diameter of the base of a cone is 10.5 cm and its slant height is 10 cm . Find its curved surface area and its total surface area.

Ans. Diameter $=10.5 \mathrm{~cm}$
\Rightarrow Radius $(r)=\frac{10.5}{2}=\frac{21}{4} \mathrm{~cm}$
Slant height of cone $(l)=10 \mathrm{~cm}$
Curved surface area of cone $=\pi r l=\frac{22}{7} \times \frac{21}{4} \times 10$
$=165 \mathrm{~cm}^{2}$
Total surface area of cone $=\pi r(l+r)=$

$$
\frac{22}{7} \times \frac{21}{4}\left(10+\frac{21}{4}\right)
$$

$=\frac{22}{7} \times \frac{21}{4} \times \frac{61}{4}$

$$
=251.625 \mathrm{~cm}^{2}
$$

17. Find the total surface area of a cone, if its slant height is 21 cm and diameter of the base is 24 cm .

Ans. Slant height of cone $(l)=21 \mathrm{~m}$
Diameter of cone $=24 \mathrm{~m}$
\Rightarrow Radius of cone $(r)=\frac{24}{2}=12 \mathrm{~m}$

Total surface area of cone $=\pi r(l+r)$
$=$

$$
\frac{22}{7} \times 12(21+12)
$$

$=\frac{264}{7} \times 33=1244.57 \mathrm{~m}^{2}$
18. The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of whitewashing its curved surface at the rate of Rs. 210 per $100 \mathrm{~m}^{2}$.

Ans. Slant height of conical tomb $(\mathrm{l})=25 \mathrm{~m}$, Diameter of tomb $=14 \mathrm{~m}$
\therefore Radius of the tomb $(r)=\frac{14}{2}=7 \mathrm{~m}$
Curved surface are of tomb $=\pi r l=\frac{22}{7} \times 7 \times 25=550 \mathrm{~m}^{2}$
\because Cost of white washing $100 m^{2}=$ Rs. 210
\therefore Cost of white washing $1 m^{2}=\frac{210}{100}$
\therefore Cost of white washing $550 \mathrm{~m}^{2}=\frac{210}{100} \times 550=$ Rs. 1155
19. A Joker's cap is in the form of a right circular cone of base radius 7 cm and height 24 cm . Find the area of the sheet required to make 10 such caps.

Ans. Radius of cap $(r)=7 \mathrm{~cm}$, Height of cap $(h)=24 \mathrm{~cm}$
Slant height of the cone $(l)=\sqrt{r^{2}+h^{2}}=\sqrt{(7)^{2}+(24)^{2}}$
$=\sqrt{49+576}=\sqrt{625}=25 \mathrm{~cm}$
Area of sheet required to make a cap $=$ CSA of cone $=\pi r l$
$=\frac{22}{7} \times 7 \times 25=550 \mathrm{~cm}^{2}$
\therefore Area of sheet required to make 10 caps $=10 \times 550=5500 \mathrm{~cm}^{2}$
20. Find the surface area of a sphere of radius:
(i) 10.5 cm (ii) 5.6 cm (iii) 14 cm

Ans. (i) Radius of sphere $=105 \mathrm{~cm}$
Surface area of sphere $=4 \pi r^{2}=$

$$
4 \times \frac{22}{7} \times 10.5 \times 10.5
$$

$=1386 \mathrm{~cm}^{2}$
(ii) Radius of sphere $=5.6 \mathrm{~m}$

Surface area of sphere $=4 \pi r^{2}=$

$$
4 \times \frac{22}{7} \times 5.6 \times 5.6
$$

$=3.94 .84 \mathrm{~m}^{2}$
(iii) Radius of sphere $=14 \mathrm{~cm}$

Surface area of sphere $=4 \pi r^{2}=4 \times \frac{22}{7} \times 14 \times 14=2464 \mathrm{~cm}^{2}$
21. Find the surface area of a sphere of diameter:
(i) 14 cm (ii) 21 cm (iii) 3.5 cm

Ans. (i) Diameter of sphere $=14 \mathrm{~cm}$, Therefore Radius of sphere $=\frac{14}{2}=7 \mathrm{~cm}$
Surface area of sphere $=4 \pi r^{2}=4 \times \frac{22}{7} \times 7 \times 7=616 \mathrm{~cm}^{2}$
(ii) Diameter of sphere $=21 \mathrm{~cm}$
\therefore Radius of sphere $=\frac{21}{2} \mathrm{~cm}$
Surface area of sphere $=4 \pi r^{2}=$

$$
4 \times \frac{22}{7} \times \frac{21}{2} \times \frac{21}{2}
$$

$=1386 \mathrm{~cm}^{2}$
(iii) Diameter of sphere $=3.5 \mathrm{~cm}$
\therefore Radius of sphere $=\frac{3.5}{2}=1.75 \mathrm{~cm}$
Surface area of sphere $=4 \pi r^{2}=$

$$
4 \times \frac{22}{7} \times 1.75 \times 1.75
$$

$=38.5 \mathrm{~cm}^{2}$
22. Find the total surface area of a hemisphere of radius 10 cm .

Ans. Radius of hemisphere $(r)=10 \mathrm{~cm}$
Total surface area of hemisphere $=3 \pi r^{2}$

$$
=3 \times 3.14 \times 10 \times 10
$$

$=942 \mathrm{~cm}^{2}$
Hence total surface area of hemisphere is $942 \mathrm{~cm}^{2}$.
23. Find the radius of a sphere whose surface area is $154 \mathrm{~cm}^{2}$.

Ans. Surface area of sphere $=154 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad 4 \pi r^{2}=154 \\
& \Rightarrow \\
& \Rightarrow \quad 4 \times \frac{22}{7} \times r^{2}=154 \\
& \Rightarrow \quad r^{2}=\frac{154 \times 7}{22 \times 4} \\
& \Rightarrow r^{2}=\frac{49}{4} \\
& \Rightarrow r=\frac{7}{2}=3.5 \mathrm{~cm}
\end{aligned}
$$

24. A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm . Find the outer curved surface area of the bowl.

Ans. Inner radius of bowl $(r)=5 \mathrm{~cm}$
Thickness of steel $(t)=0.25 \mathrm{~cm}$
\therefore Outer radius of bowl $(\mathrm{R})=r+t=5+0.25=5.25 \mathrm{~cm}$
\therefore Outer curved surface area of bowl $=2 \pi \mathrm{R}^{2}=$

$$
2 \times \frac{22}{7} \times 5.25 \times 5.25
$$

$=$

$$
2 \times \frac{22}{7} \times \frac{21}{4} \times \frac{21}{4}
$$

$=\frac{693}{4}=173.25 \mathrm{~cm}^{2}$
25. A right circular cylinder just encloses a sphere of radius r (See figure). Find:
(i) Surface area of the sphere.
(ii) Curved surface area of the cylinder.
(iii) Ratio of the areas obtained in (i) and (ii).

Ans. (i) Radius of sphere $=r$
\therefore Surface area of sphere $=$

$$
2 \pi(\text { radius })^{2}=2 \pi r^{2}
$$

(ii) \because The cylinder just encloses the sphere in it.
\therefore The height of cylinder will be equal to diameter of sphere.
And The radius of cylinder will be equal to radius of sphere.
\therefore Curved surface area of cylinder $=2 \pi r h=2 \pi r \times \pi r \quad[\because h=2 r]$
$=4 \pi r^{2}$
(iii)

$$
\frac{\text { Surface area of sphere }}{\text { Curved surface area of cylinder }}=\frac{4 \pi r^{2}}{4 \pi r^{2}}=\frac{1}{1}
$$

\therefore Required ratio $=1: 1$

26. A matchbox

$$
4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}
$$

. What will be the volume a packet containing 12 such boxes?

Ans. Given: Length $(l)=4 \mathrm{~cm}$, Breadth $(b)=2.5 \mathrm{~cm}$, Height $(h)=1.5 \mathrm{~cm}$
Volume of a matchbox $=l \times b \times h$
$=4 \times 2.5 \times 1.5$
$=15 \mathrm{~cm}^{3}$
\therefore Volume of a packet containing 12 such
27. A cubical water tank is 6 m long, 5 m wide and 4.5 m deep. How many litres of water can it hold? $\left(1 \mathrm{~m}^{3}=1000 \mathrm{l}\right)$

Ans. Volume of water in cuboidal tank

$$
=6 m \times 5 \mathrm{~m} \times 4.5 \mathrm{~m}
$$

$=135 \mathrm{~m}^{3}$

$$
=135 \times 1000 \text { liters }
$$

$=135000$ liters

Hence tank can hold 135000 liters of water.
28. A cuboidal vessel is 10 m long and 8 m wide. How high must it be to hold 380 cubic meters of a liquid?

Ans. Let height of cuboidal vessel $=h \mathrm{~m}$
Volume of liquid in cuboidal vessel $=380 \mathrm{~m}^{3}$

$$
\begin{aligned}
& \Rightarrow \quad l \times b \times h=380 \mathrm{~m}^{3} \\
& \Rightarrow \quad 10 \mathrm{~m} \times 8 \mathrm{~m} \times h=380 \\
& \Rightarrow \quad h=\frac{380}{10 \times 8}=4.75 \mathrm{~m}
\end{aligned}
$$

Hence cuboidal vessel is 4.75 m high.
29. Find the cost of digging a cuboidal pit 8 m long. 6 m broad and 3 m deep at the rate of Rs. 30 per m^{3}.

Ans. Volume of cuboidal pit

$$
=8 m \times 6 m \times 3 m
$$

$=144 \mathrm{~m}^{3}$
\because Cost of digging $1 \mathrm{~m}^{3}$ cuboidal pit $=$ Rs. 30
\therefore Cost of digging $144 \mathrm{~m}^{3}$ cuboidal pit
$=30 \times 144$
=Rs. 4320
30. The capacity of a cuboidal tank is 50000 litres of water. Find the breadth of the tank, if its length and depth are respectively 2.5 m and $10 \mathrm{~m} .\left(1 \mathrm{~m}^{3}=1000 \mathrm{l}\right)$

Ans. Capacity of cuboidal tank $=50000$ liters
$\Rightarrow \quad l \times b \times h=50000$ liters

$$
\Rightarrow 2.5 \mathrm{~m} \times b \times 10 \mathrm{~m}
$$

$=\frac{50000}{1000} \mathrm{~m}^{3}$

$$
\left[\because 1000 \mathrm{l}=1 \mathrm{~m}^{3}\right]
$$

$\Rightarrow \quad 25 \times b=50$
$\Rightarrow \quad b=2 \mathrm{~m}$
Hence breadth of cuboidal tank is 2 m .
31. A river 3 m deep and 40 m wide is flowing at the rate of 2 km per hour. How much water eill fall into the sea in a minute?

Ans. Since water flows at the rate of 2 km per hour, the water from 2 km of the river flows into the sea in one hour.

Therefore, the volume of water flowing into the sea in one hour = Volume of a cuboid

$$
=l \times b \times h
$$

$$
=2000 \mathrm{~m} \times 40 \mathrm{~m} \times 3 \mathrm{~m}
$$

$=240000 \mathrm{~m}^{3} 1 \mathrm{~km}=1000 \mathrm{~m}$
Now, Volume of water flowing into sea in 1 hour (in 60 minutes) $=240000 \mathrm{~m}^{3}$
\therefore Volume of water flowing into sea in 1 minute $=\frac{240000}{60}=4000 \mathrm{~m}^{3}$
32. Find the length of a wooden plank of width 2.5 m , thickness 0.025 m and volume $0.25 \mathrm{~m}^{3}$.

Ans. Given: Volume of wooden plank $=0.25 \mathrm{~m}^{3}$

$$
\begin{aligned}
& \Rightarrow \quad l \times 2.5 \times 0.025=0.25 \\
& \Rightarrow \quad l=\frac{0.25}{2.5 \times 0.025} \\
& \Rightarrow \quad l=4 \mathrm{~m}
\end{aligned}
$$

Hence required length of wooden plank is 4 m .
33. If the lateral surface of a cylinder is $94.2 \mathrm{~cm}^{2}$ and its height is 5 cm , then (i) radius of its base (ii) volume of the cylinder.

Ans. Height of the cylinder $(h)=5 \mathrm{~cm}$
Lateral surface area of the cylinder $=94.2 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad 2 \pi r h=94.2 \\
& \Rightarrow \quad 2 \times 3.14 \times r \times 5=94.2 \\
& \Rightarrow \quad r=\frac{94.2}{2 \times 3.14 \times 5}=3 \mathrm{~cm}
\end{aligned}
$$

\therefore Volume of cylinder $=\pi r^{2} h=3.14 \times 3 \times 3 \times 5=141.3 \mathrm{~cm}^{3}$
34. A bag of grain contains $2.8 \mathrm{~m}^{3}$ of grain. How many bags are needed to fill a drum of radius 4.2 m and height 5 m ?

Ans. Radius of drum $(r)=4.2 \mathrm{~m}$ and Height of drum $(h)=5 \mathrm{~m}$
Volume of a drum $=\pi r^{2} h=$

$$
\begin{aligned}
& \frac{22}{7} \times 4.2 \times 4.2 \times 5 \\
& =22 \times 0.6 \times 4.2 \times 5
\end{aligned}
$$

$=277.2 \mathrm{~m}^{3}$
Now, Number of bags =
Volume of grain in the drum
Volume of each bag
$=\frac{277.2}{2.8}$
$=99$

Hence 99 bags are needed to fill the drum.
35. A lead pencil consists of a cylinder of wood with a solid cylinder of graphite filled in the interior. The diameter of the pencil is 7 mm and diameter of graphite is $1 \mathbf{~ m m}$. If the length of the pencil is 14 cm , find the columns of the wood and that of the graphite.

Ans. Diameter of graphite $=1 \mathrm{~mm}$
\therefore Radius of drum $=0.5 \mathrm{~mm}=0.05 \mathrm{~cm}$

Height of graphite $(h)=14 \mathrm{~cm}$
Volume of graphite $=\pi r^{2} h=$

$$
\frac{22}{7} \times(0.05)^{2} \times 14
$$

$=0.11 \mathrm{~cm}^{3}$
Diameter of pencil $=7 \mathrm{~mm}$
\therefore Radius of pencil $(R)=3.5 \mathrm{~mm}=0.35 \mathrm{~cm}$
Volume of pencil $=\pi \mathrm{R}^{2} h=$

$$
\frac{22}{7} \times(0.35)^{2} \times 14
$$

$=5.39 \mathrm{~cm}^{3}$
Now, Volume of wood = Volume of pencil - Volume of graphite

$$
=5.39-0.11=5.28 \mathrm{~cm}^{3}
$$

3 Marks Quetions

1. A small indoor green house (herbarium) is made entirely of glass panes (including base) held together with tape. It is 30 cm long, 25 cm wide and 25 cm high.
(i) What is the surface area of the glass?
(ii) How much of tape is needed for all the 12 edges?

Ans. (i) Given: Length of glass herbarium (l) $=30 \mathrm{~cm}$,
Breadth $(b)=25 \mathrm{~cm}$ and Height $(h)=25 \mathrm{~m}$
Total surface area of the glass $=2(l b+b h+h l)$

$$
=2(30 \times 25+25 \times 25+25 \times 30)
$$

$=2(750+625+750)$

$$
=2 \times 2125=4250 \mathrm{~cm}^{2}
$$

Hence $4250 \mathrm{~cm}^{2}$ of the glass is required to make a herbarium.
(ii) Tape is used at 12 edges.
\Rightarrow Tape is used at 4 lengths, 4 breadths and 4 heights.
\Rightarrow Total length of the tape $=4(l+b+h)=2(30+25+25)=320 \mathrm{~cm}$
Hence 320 cm of the tape if needed to fix 12 edges of herbarium.
2. A metal pipe is 77 cm long. The inner diameter of a cross section is 4 cm , the outer diameter being 4.4 cm . Seefig . . Find its:
(i) Inner curved surface area
(ii) Outer curved surface area

(iii) Total surface area

Ans. (i) Length of the pipe $=77 \mathrm{~cm}$, Inner diameter of cross-section $=4 \mathrm{~cm}$
\Rightarrow Inner radius of cross-section $=2 \mathrm{~cm}$
Inner curved surface area of pipe $=2 \pi r h=2 \times \frac{22}{7} \times 2 \times 77$

$$
=2 \times 22 \times 2 \times 11=968 \mathrm{~cm}^{2}
$$

(ii) Length of pipe $=77 \mathrm{~cm}$, Outer diameter of pipe $=4.4 \mathrm{~cm}$
\Rightarrow Outer radius of the pipe $=2.2 \mathrm{~cm}$
Outer surface area of the pipe $=2 \pi r h=$

$$
\begin{gathered}
2 \times \frac{22}{7} \times 2.2 \times 77 \\
=44 \times 2.2 \times 11=1064.8 \mathrm{~cm}^{2}
\end{gathered}
$$

(iii) Now there are two circles of radii 2 cm and 2.2 cm at both the ends of the pipe.
\therefore Area of two edges of the pipe $=2$ (Area of outer circle - area of inner circle)
$=2\left(\pi \mathrm{R}^{2}-\pi r^{2}\right)=2 \pi\left(\mathrm{R}^{2}-r^{2}\right)$
$=$

$$
2 \times \frac{22}{7}\left[(2.2)^{2}-(2)^{2}\right]
$$

$=\frac{44}{7}(4.84-4)$
$=\frac{44}{7} \times 0.84=5.28 \mathrm{~cm}^{2}$
\therefore Total surface area of pipe
$=$ Inner curved surface area + Outer curved surface area + Area of two edges
$=968+1064.8+5.28=2038.08 \mathrm{~cm}^{2}$
3. Curved surface area of a cone is $308 \mathrm{~cm}^{2}$ and its slant height is 14 cm . Find (i) radius of the base and (ii) total surface area of the cone.

Ans. (i) Slant height of cone $(l)=14 \mathrm{~cm}$
Curved surface area of cone $=308 \mathrm{~cm}^{2}$
$\Rightarrow \pi r l=308 \Rightarrow$

$$
\frac{22}{7} \times r \times 14=308
$$

$\Rightarrow r=\frac{308 \times 7}{14 \times 22} \Rightarrow r=7 \mathrm{~cm}$
(ii) Total surface area of the cone $=$ Curved surface area + Area of circular base

$$
\begin{aligned}
& =308+\pi r^{2} \\
& =308+\frac{22}{7} \times(7)^{2} \\
& =462 \mathrm{~cm}^{2}
\end{aligned}
$$

4. A conical tent is 10 m high and the radius of its base is $\mathbf{2 4} \mathrm{m}$. Find:
(i) slant height of the tent.
(ii) cost of the canvas required to make the tent, if the cost of a^{2} canvas is Rs. 70.

Ans. Height of the conical tent $(h)=10 \mathrm{~m}$
Radius of the conical tent $(r)=24 \mathrm{~m}$
(i) Slant height of the tent $(l)=\sqrt{r^{2}+h^{2}}$
$=$

$$
\sqrt{(24)^{2}+(10)^{2}}
$$

$=\sqrt{576+100}$
$=\sqrt{676}=26 \mathrm{~m}$
(ii) Canvas required to make the tent = Curved surface area of the tent
$=\pi r l=\frac{22}{7} \times 24 \times 26=\frac{13728}{7} \mathrm{~m}^{2}$
\because Cost of $1 m^{2}$ canvas $=$ Rs. 70
\therefore Cost of $\frac{13728}{7} m^{2}$ canvas $=70 \times \frac{13728}{7}=$ Rs. 137280
5. What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m ? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm .

$$
\text { (Use } \pi=3.14 \text {) }
$$

Ans. Height of the conical tent $(h)=8 \mathrm{~m}$ and Radius of the conical tent $(r)=6 \mathrm{~m}$ Slant height of the tent $(l)=\sqrt{r^{2}+h^{2}}$
$=\sqrt{(6)^{2}+(8)^{2}}$
$=\sqrt{36+64}$
$=\sqrt{100}=10 \mathrm{~m}$
Area of tarpaulin $=$ Curved surface area of tent $=\pi r l$

$$
=3.14 \times 6 \times 10=188.4 \mathrm{~m}^{2}
$$

Width of tarpaulin $=3 \mathrm{~m}$
Let Length of tarpaulin = L
\therefore Area of tarpaulin $=$

$$
\text { Length } \times \text { Breadth }=L \times 3
$$

$=3 \mathrm{~L}$

Now According to question, 3L = 188.4
$\Rightarrow L=\frac{1884.4}{3}=62.8 \mathrm{~m}$
The extra length of the material required for stitching margins and cutting is $20 \mathrm{~cm}=0.2 \mathrm{~m}$.
So the total length of tarpaulin bought is $(62.8+0.2) \mathrm{m}=63 \mathrm{~m}$
6. A bus stop is barricaded from the remaining part of the road, by using 50 hollow cones made of recycled cardboard. Each cone has a base diameter of 40 cm and height 1 m . If the outer side of each of the cones is to be painted and the cost of painting is Rs. 12 per m^{2}, what will be the cost of painting all these cones?

$$
(\text { Use } \pi=3.14 \text { and take } \sqrt{1.04}=1.02)
$$

Ans. Diameter of cone $=40 \mathrm{~cm}$
\Rightarrow Radius of cone $(r)=\frac{40}{2}$
$=20 \mathrm{~cm}$
$=\frac{20}{100} \mathrm{~m}$
$=0.2 \mathrm{~m}$

Height of cone $(h)=1 \mathrm{~m}$

Slant height of cone $(l)=\sqrt{r^{2}+h^{2}}$
$=\sqrt{(0.2)^{2}+(1)^{2}}=\sqrt{1.04} \mathrm{~m}$
Curved surface area of cone $=\pi r l=$

$$
3.14 \times 0.2 \times \sqrt{1.04}
$$

$=0.64056 \mathrm{~m}^{2}$
\because Cost of painting $1 \mathrm{~m}^{2}$ of a cone $=$ Rs. 12
\therefore Cost of painting $0.64056 \mathrm{~m}^{2}$ of a cone $=12 \times 0.64056=$ Rs. 7.68672
\therefore Cost of painting of 50 such cones $=50 \times 7.68672=$ Rs. 384.34 (approx.)
7. The radius of a spherical balloon increases from 7 cm to 14 cm as air is being pumped into it. Find the ratio of surface areas of the balloon in the two cases.

Ans. I case: Radius of balloon $(r)=7 \mathrm{~cm}$
Surface area of balloon $=4 \pi r^{2}=4 \pi \times 7 \times 7 \mathrm{~cm}^{2}$

II case: Radius of balloon $(R)=14 \mathrm{~cm}$
Surface area of balloon $=4 \pi \mathrm{R}^{2}=$

$$
\begin{equation*}
4 \pi \times 14 \times 14 \mathrm{~cm}^{2} \tag{ii}
\end{equation*}
$$

Now, Ratio fromeq . (i) and (ii),
$\frac{\text { CSA in first case }}{\text { CSA in second case }}$
$=\frac{4 \pi \times 7 \times 7}{4 \pi \times 14 \times 14}=\frac{1}{4}$

Hence, required ratio = 1: 4
8. A village having a population of 4000 requires 150 litres of water per head per day. It has a tank measuring 20 m by 15 m by 6 m . For how many days will the water of this tank last?

Ans. Capacity of cuboidal tank $=l \times b \times h=$

$$
20 m \times 15 m \times 6 m
$$

$=1800 \mathrm{~m}^{3}=$

$$
1800 \times 1000 \text { liters }
$$

$$
\left[\because 1000 \mathrm{l}=1 \mathrm{~m}^{3}\right]
$$

$=1800000$ liters
Water required by her head per day $=150$ liters
Water required by 4000 persons per day $=150 \times 4000=600000$ liters
Number of days the water will last $=$
Capacity of tank (in liter)
Total water required per day (in liters)
$=\frac{1800000}{600000}=3$
Hence water of the given tank will last for 3 days.

9. A godown measures

$$
40 \mathrm{~m} \times 25 \mathrm{~m} \times 15 \mathrm{~m}
$$

. Find the maximum number of wooden crates each measuring

$$
1.5 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5 \mathrm{~m}
$$

that can be stored in the godown.
Ans. Capacity of cuboidal godown =

$$
40 m \times 25 m \times 15 m
$$

$=15000 \mathrm{~m}^{3}$
Capacity of wooden crate $=$

$$
1.5 m \times 1.25 m \times 0.5 \mathrm{~m}
$$

$=0.9375 \mathrm{~m}^{3}$
Maximum number of crates that can be stored in the godown $=$
$\frac{\text { Volume of godown }}{\text { Volume of one crate }}$
$=\frac{15000}{0.9375}=16000$
Hence maximum 16000 crates can be stored in the godown.
10. Find the minimum number of bricks each measuring

$$
22.5 \mathrm{~cm} \times 11.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}
$$

required to construct a wall 10 m long, 6 m high and 1.5 m thick.

Ans. Volume of one cuboidal brick $=l \times b \times h$

$$
\begin{gathered}
=22.5 \mathrm{~cm} \times 11.5 \mathrm{~cm} \times 7.5 \mathrm{~cm}^{3} \\
=1940.625 \mathrm{~cm}^{3} \\
=0.001940625 \mathrm{~m}^{3}
\end{gathered}
$$

Volume of cuboidal wall

$$
=10 \mathrm{~m} \times 6 \mathrm{~m} \times 1.5 \mathrm{~m}
$$

$=90 \mathrm{~m}^{3}$
Minimum number of bricks required $=$
$\frac{\text { Volume of wall }}{\text { Volume of a brick }}$
$=\frac{90}{0.001940625}=$

$$
\frac{90}{\frac{1940625}{1000000000}}
$$

$=\frac{90000000000}{1940625}=46376.81$
= 46377 Sincebrickscannotbeinfraction
11. The circumference of the base of a cylindrical vessel is $132 \mathbf{c m}$ and its height is $\mathbf{2 5}$ cm. How many litres of water can it hold? $\left(1 \mathrm{~m}^{3}=1000 \mathrm{l}\right)$

Ans. Height of vessel $=(h)=25 \mathrm{~cm}$

Circumference of base of vessel = 132 cm
$\Rightarrow 2 \pi r=132 \Rightarrow$

$$
2 \times \frac{22}{7} \times r=132
$$

$\Rightarrow \quad r=\frac{132 \times 7}{2 \times 22}=21 \mathrm{~cm}$
Now, Volume of cylindrical vessel $=\pi r^{2} h=$

$$
\frac{22}{7} \times 21 \times 21 \times 35
$$

$=34650 \mathrm{~cm}^{3}$
$=\frac{34650}{1000}$ liters $\left[\because 1000 \mathrm{~cm}^{3}=1\right.$ liter]
$=34.65$ liters
12. The inner diameter of a cylindrical wooden pipe is 24 cm and its out diameter is 28 cm . The length of the pipe is 35 cm . Find the mass of the pipe, if $1 \mathrm{~cm}^{3}$ of wood has a mass of 0.5 g .

Ans. Inner diameter of pipe $=28 \mathrm{~cm}$
\therefore Inner radius of pipe $(r)=\frac{24}{2}=12 \mathrm{~cm}$
And Outer diameter of pipe $=28 \mathrm{~cm}$
\therefore Outer radius of pipe $(R)=\frac{28}{2}=14 \mathrm{~m}$
Length of pipe $(h)=35 \mathrm{~cm}$
Volume of wood $=$ Volume of outer cylinder - Volume of inner cylinder
$=\pi \mathrm{R}^{2} h-\pi r^{2} h=\pi h\left(\mathrm{R}^{2}-r^{2}\right)$
$=$

$$
\begin{aligned}
& \frac{22}{7} \times 35\left[(14)^{2}-(12)^{2}\right] \\
= & 110[196-144]=110 \times 52
\end{aligned}
$$

$=5720 \mathrm{~cm}^{3}$
\because Weight of $1 \mathrm{~cm}^{3}$ of wood $=0.6 \mathrm{~g}$
\therefore Weight of $5720 \mathrm{~cm}^{3}$ of wood $=0.6 \times 5720$
$=3432 \mathrm{~g}=3.432 \mathrm{~kg}$
13. A soft drink is available in two packs (i) a tin can with a rectangular base of length 5 cm and width 4 cm , having height of 15 cm (ii) a plastic cylinder with circular base of diameter 7 cm and height 10 cm . Which container has greater capacity and how much?

Ans. I case: Length of tin $(l)=5 \mathrm{~cm}$, Width of tin $(b)=4 \mathrm{~cm}$
and Height of tin $(h)=15 \mathrm{~cm}$
Then, Capacity of tin $=l \times b \times h$

$$
=5 \times 4 \times 15=300 \mathrm{~cm}^{3}
$$

II case: Diameter of base of cylinder $=7 \mathrm{~cm}$
\therefore Radius of base of cylinder $(r)=\frac{7}{2} \mathrm{~cm}$
Height of cylinder $\left(h^{\prime}\right)=10 \mathrm{~cm}$
Capacity of cylinder $=\pi r^{2} h^{\prime}=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 10=385 \mathrm{~cm}^{3}$
From the cases I and II, we observed that cylindrical container has greater capacity by (385 $-300)=85 \mathrm{~cm}^{3}$.
14. It costs Rs. 2200 to paint the inner curved surface of a cylindrical vessel 10 m deep. If the cost of painting is at the rate of Rs. 20 per m^{2}, find:
(i) inner curved surface area of the vessel.
(ii) radius of the base.
(iii) capacity of the vessel.

Ans. Total cost to paint inner curved surface area of the vessel = Rs. 2200
Rate $=$ Rs. 20 per square meter
(i) Inner curved surface area of vessel $=\frac{\text { Total cost }}{\text { Rate }}=\frac{2200}{20}=110 \mathrm{~m}^{2}$
(ii) Depth of the vessel $(h)=10 \mathrm{~m}$

Now, Inner surface area of vessel $=110 \mathrm{~m}^{2}$

$$
\begin{aligned}
& \Rightarrow \quad 2 \pi r h=110 \\
& \Rightarrow \\
& \Rightarrow \quad r=\frac{110 \times 7}{2 \times 22 \times 10}=1.75 \mathrm{~m} \\
& 2 \times \frac{22}{7} \times r \times 10=110 \\
& \text { (iii) Since } r=1.75 \mathrm{~m} \text { and } h=10 \mathrm{~m} \\
& \therefore \text { Capacity of vessel = Volume of cylinder }=\pi r^{2} h \\
& = \\
& =96.25 \mathrm{~m}^{3} \\
& =96.25 \mathrm{kl}\left[\because 1 \mathrm{~m}^{3}=1 \mathrm{kl}\right]
\end{aligned}
$$

15. The capacity of a closed cylindrical vessel of height $1 \mathbf{m}$ is 15.4 litres. How many square meters of metal sheet would be needed to make it?

Ans. Height of the vessel $(h)=1 \mathrm{~m}$
Capacity of vessel = 15.4 liters
$=\frac{15.4}{1000}$ kilo liters
$=0.0154 \mathrm{~m}^{3}\left[\because 1 \mathrm{~m}^{3}=1 \mathrm{kl}\right]$
$\Rightarrow \pi r^{2} h=0.0154$
\Rightarrow

$$
\frac{22}{7} \times r^{2} \times 1=0.0154
$$

\Rightarrow
$r^{2}=\frac{0.0154 \times 7}{22}$
$\Rightarrow r^{2}=0.0007 \times 7=0.0048$
$\Rightarrow \quad r=0.07 \mathrm{~m}$
Now, Area of metal sheet required $=$ TSA of cylindrical vessel
$=2 \pi r(r+h)$
$=$

$$
2 \times \frac{22}{7} \times 0.07(1+0.07)
$$

=

$$
\frac{44}{7} \times 0.07 \times 1.07
$$

$=0.4708 \mathrm{~m}^{2}$
16. Find the capacity of a conical vessel with:
(i) Radius 7 cm , Slant height 25 cm
(ii) Height 12 cm, Slant height 13 cm

Ans. (i) Given: $r=7 \mathrm{~cm}, l=25 \mathrm{~cm}$

$$
\begin{aligned}
& h=\sqrt{l^{2}-r^{2}} \\
&=\sqrt{(25)^{2}-(7)^{2}} \\
&=\sqrt{625-49} \\
&=\sqrt{576}=24 \mathrm{~cm}
\end{aligned}
$$

Capacity of conical vessel $=\frac{1}{3} \pi r^{2} h$

$$
=
$$

$$
\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24
$$

$$
=1232 \mathrm{~cm}^{3}
$$

$$
=1.232 \text { liters }\left[\because 1000 \mathrm{~cm}^{3}=1 \text { liter }\right]
$$

(ii) Given: $h=12 \mathrm{~cm}, \quad l=13 \mathrm{~cm}$

$$
\begin{aligned}
& r=\sqrt{l^{2}-h^{2}}=\sqrt{(13)^{2}-(12)^{2}}=\sqrt{169-144} \\
& =\sqrt{25}=5 \mathrm{~cm}
\end{aligned}
$$

Capacity of conical vessel $=\frac{1}{3} \pi r^{2} h$

$$
\frac{1}{3} \times \frac{22}{7} \times 5 \times 5 \times 12
$$

$=\frac{2200}{7} \mathrm{~cm}^{3}$
$=\frac{2200}{7} \times \frac{1}{1000}$ liters $\left[\because 1000 \mathrm{~cm}^{3}=1\right.$ liter $]$
$=\frac{11}{35}$ liter
17. If the triangle $A B C$ in question 7 above is revolved about the side 5 cm , then find the volume of the solid so obtained. Find, also, the ratio of the volume of the two solids obtained.

Ans. When right angled triangle $A B C$ is revolved about side 5 cm , then the solid formed is a cone.

In that cone, Height $(h)=5 \mathrm{~cm}$
And radius $(r)=12 \mathrm{~cm}$
Therefore, Volume of cone $=\frac{1}{3} \pi r^{2} h$
$=$

$$
=240 \pi \mathrm{~cm}^{3} \quad \frac{1}{3} \pi \times 12 \times 12 \times 5
$$

Now,
Volume of cone in Q. No. 7
Volume of vone in Q. No. 8
$=\frac{100 \pi}{240 \pi}=\frac{5}{12}$
\therefore Required ratio $=5: 12$
18. The diameter of the moon is approximately one-fourth the diameter of the earth. What fraction is the volume of the moon of the volume of the earth?

Ans. Let diameter of earth be x
\therefore Radius of earth $(r)=\frac{x}{2}$
Now, Volume of earth $=\frac{4}{3} \pi r^{3}[\because$ Earth is considered to be a sphere $]$
$=$

$$
\frac{4}{3} \times \pi \times \frac{x}{2} \times \frac{x}{2} \times \frac{x}{2}
$$

$=\frac{1}{8} \times \frac{4}{3} \pi x^{3}$
According to question, Diameter of moon $=\frac{1}{4} \times$ Diameter of earth $=\frac{1}{4} \times x=\frac{x}{4}$
\therefore Radius of moon $(R)=\frac{x}{8}$
Now, Volume of Moon $=\frac{4}{3} \pi \mathrm{R}^{3}[\because$ Moon is considered to be a sphere $]$
$=$

$$
\frac{4}{3} \times \pi \times \frac{x}{8} \times \frac{x}{8} \times \frac{x}{8}
$$

$=\frac{1}{512} \times \frac{4}{3} \pi x^{3}$
$=$

$$
\frac{1}{64} \times\left[\frac{1}{8} \times \frac{4}{3} \pi x^{3}\right]
$$

$=\frac{1}{64} \times$ Volume of Earth Fromeq . (i)
\therefore Volume of moon is $\frac{1}{64}$ th the volume of earth.
19. How many litres of milk can a hemispherical bowl of diameter 10.5 hold?

Ans. Diameter of hemispherical bowl $=10.5 \mathrm{~cm}$
\therefore Radius of hemispherical bowl $(r)=\frac{10.5}{2}=5.25 \mathrm{~cm}$
Volume of milk in hemispherical bowl $=\frac{2}{3} \pi r^{3}$
$=$

$$
\frac{2}{3} \times \frac{22}{7} \times 5.25 \times 5.25 \times 5.25
$$

=

$$
\frac{2}{3} \times \frac{22}{7} \times \frac{525}{100} \times \frac{525}{100} \times \frac{525}{100}
$$

$=11 \times \frac{21}{4} \times \frac{21}{4}=303.187 \mathrm{~cm}^{3}$
$=\frac{303.187}{1000}$ liters

$$
\left[\because 1000 \mathrm{~cm}^{3}=1 l\right]
$$

$=0.303187$ liters $=0.303$ liters (approx.)
20. Find the volume of a sphere whose surface area is $154 \mathrm{~cm}^{2}$.

Ans. Surface area of sphere $=154 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \Rightarrow 4 \pi r^{2}=154 \Rightarrow \\
& 4 \times \frac{22}{7} \times r^{2}=154 \\
& \Rightarrow r^{2}=\frac{154 \times 7}{4 \times 22}=\frac{49}{4} \Rightarrow r=\frac{7}{2} \mathrm{~cm}
\end{aligned}
$$

Now, Volume of sphere $=\frac{4}{3} \pi r^{3}=$

$$
\frac{4}{3} \times \frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times \frac{7}{2}
$$

$=\frac{1}{3} \times 11 \times 49=\frac{539}{3}=179 \frac{2}{3} \mathrm{~cm}^{3}$
21. A wooden bookshelf has external dimensions as follows: Height $=110 \mathrm{~cm}$, Depth $=$ 25 cm , Breadth $=\mathbf{8 5} \mathbf{c m}$ Seefig .. The thickness of the planks is 5 cm everywhere. The external faces are to be polished and the inner faces are to be painted. If the rate of polishing is 20 paise per cm^{2} and the rate of painting is 10 paise per cm^{2}, find the total expenses required for polishing and painting the surface of the bookshelf

Ans. External faces to be polished
$=$ Area of six faces of cuboidal bookshelf -3 (Area of open portion ABCD)
=

$$
2(110 \times 25+25 \times 85+85 \times 110)
$$

$-3(75 \times 30)$
$[\because \mathrm{AB}=85-5-5=75 \mathrm{~cm}$ and $\mathrm{AD}=$

$$
\frac{1}{3} \times 110-5-5-5-5
$$

$=30 \mathrm{~cm}$]
$=2(2750+2125+9350)-3 \times 2250$

$$
=2 \times 14225-6750
$$

$=28450-6750$
$=21700 \mathrm{~cm}^{2}$
Now, cost of painting outer faces of wodden bookshelf at the rate of 20 paise.
$=$ Rs. 0.20 per $\mathrm{cm}^{2}=$ Rs. $0.20 \times 21700=$ Rs. 4340
Here, three equal five sides inner faces.
Therefore, total surface area $=$

$$
3[2(30+75) 20+30 \times 75]
$$

$[\because$ Depth $=25-5=20 \mathrm{~cm}]$

$$
=3[2 \times 105 \times 20+2250]
$$

$$
\begin{aligned}
& =34200+2250 \\
& =3 \times 6450=19350 \mathrm{~cm}^{2}
\end{aligned}
$$

Now, cost of painting inner faces at the rate of 10 paise i.e. Rs. 0.10 per cm^{2}.

$$
=\text { Rs. } 0.10 \times 19350
$$

$=$ Rs. 1935

22. If diameter of a sphere is decreased by 25% then what percent does its curved surface area decrease?

Ans. Diameter of original sphere $=D=2 R \Rightarrow R=\frac{D}{2}$
Curved surface area of original sphere $=4 \pi R^{2}=4 \pi\left(\frac{D}{2}\right)^{2}=\pi D^{2}$
According to the question, Decreased diameter $=25 \%$ of $D=\frac{25}{100} D=\frac{D}{4}$
\therefore Diameter of new sphere $=D-\frac{D}{4}=\frac{3 D}{4}$
\therefore Radius of new sphere $=\frac{3 D}{8}$

Now, curved surface area of new sphere $=4 \pi r^{2}=4 \pi\left(\frac{3 \mathrm{D}}{8}\right)^{2}=\frac{9 \pi}{16} \mathrm{D}^{2}$
Change in curved surface area $=\pi \mathrm{D}^{2}-\frac{9 \pi}{16} \mathrm{D}^{2}$
$=\frac{7}{16} \pi \mathrm{D}^{2}$
Percent change in the curved surface area $=$
Change in curved surface area
Curved surface area of origianal sphere
$\times 100$
$=$

$$
\frac{\frac{7}{16} \pi \mathrm{D}^{2}}{\pi \mathrm{D}^{2}}
$$

$\times 100=\frac{7}{16} \times 100=43.75 \%$
23. The surface area of cuboids is $3328 \mathrm{~m}^{2}$; its dimensions are in the ratio 4:3:2. Find the volume of the cuboid.

Ans. Let the dimensions of the cuboid be $4 x, 3 x$ and $2 x$ meters
Surface area of the cuboid $=2$

$=$| $(4 x \times 3 x+3 x \times 2 x+2 x \times 4 x)$ sq m |
| :---: |
| $=$ |
| $2\left(12 x^{2}+6 x^{2}+8 x^{2}\right) s q \mathrm{~m}$ |
| |
| |
| |
| |
| |

Given surface area $=3328$ sq m
From (i) and (ii) we get
$52 x^{2}=3328$

$$
\text { or } x^{2}=\frac{3328}{52}=64
$$

or $x=8$

$$
\therefore 4 x=32,3 x=24
$$

and $2 x=16$

Thus the dimensions of the cuboid are $32 \mathrm{~m}, 24 \mathrm{~m}$ and 16 m
\therefore Volume of the cuboid=

$$
(32 \times 24 \times 16) \mathrm{m}^{3}
$$

= 12288cu m
24. The volume of a rectangular slower of stone is $10368 \mathrm{dm}^{3}$ and is dimensions are in the ratio of 3:2:1. (i) Find the dimensions (ii) Find the cost of polishing its entire surface @ Rs. 2 per dm ${ }^{2}$.

Ans. Let the length of the block be $3 x d m$
Width $=2 \times d m$ and height $=x d m$
Volume of the block $=10368 \mathrm{dm}^{3}$

$$
\therefore 3 x \times 2 x \times x=10368
$$

$$
\begin{aligned}
& \text { or } x^{3}=\frac{10368}{6} \\
& =1728 \\
& \therefore x=\sqrt[3]{1728} \\
& =\sqrt[3]{12 \times 12 \times 12} \\
& =12
\end{aligned}
$$

also $2 x=24$ and $3 x=36$
Thus dimensions of the block are $36 \mathrm{dm}, 24 \mathrm{dm}$ and 12 dm

Surface area of the block $=$

$$
2(36 \times 24+24 \times 12+36 \times 12) \mathrm{dm}^{2}
$$

$=2(864+288+432) \mathrm{dm}^{2}$
$=2 \times 1584 \mathrm{dm}^{2}$
$=3168 \mathrm{dm}^{2}$
Cost of polishing the surface $=R s(2 \times 3168)$
=Rs. 6336
25. In a cylindrical drum of radius 4.2 m and height 3.5 m , how many full bags of wheat can be emptied if the space required for each bag is 2.1 cu m .

Ans. Radius of the drum $=4.2 \mathrm{~m}=\frac{42}{10} \mathrm{~m}$
Height of the drum $=3.5 \mathrm{~m}=\frac{35}{10} \mathrm{~m}$
\therefore Volume of the drum

$$
\begin{gather*}
=\pi r^{2} \text { hcu units } \\
=\left(\frac{22}{7} \times \frac{42}{10} \times \frac{42}{10} \times \frac{35}{10}\right) \text { cu m } \tag{i}
\end{gather*}
$$

Volume of wheat in each bags $=2.1 \mathrm{cu} \mathrm{m}=$

$$
\begin{equation*}
\frac{21}{10} \mathrm{cum} \rightarrow \tag{ii}
\end{equation*}
$$

\therefore No.of bags $=$
volume of drum
volume of wheat in each bag

$$
=\frac{\frac{22}{7} \times \frac{42}{10} \times \frac{42}{10} \times \frac{35}{10}}{\frac{21}{10}}
$$

$=\frac{924}{10}=92.4$
$=92$

Hence the number of full bags is 92
26. The inner diameter of a cylindrical wooden tripe is 24 cm . and its outer diameter is 28 cm . the length of wooden tripe is 35 cm . find the mass of the tripe, if 1 cu cm of wood has a mass of 0.6 g .

Ans. Inside diameter of the pipe $=24 \mathrm{~cm}$
Outside diameter of the pipe $=28 \mathrm{~cm}$
Length of the pipe $=35 \mathrm{~cm}=(\mathrm{h}$ says $)$
Outside radius of the pipe $=$

$$
\frac{28}{2} \mathrm{~cm}=14 \mathrm{~cm}=R(\text { says })
$$

Volume of the wood = External volume - Internal volume

$$
\begin{array}{ll}
=\pi r^{2} h-\pi^{2} l \\
& =\pi \times 35\left(14^{2}-12^{2}\right) \mathrm{cu} \mathrm{~cm} \\
& =\frac{22}{7} \times 35(14+12)(14-12)
\end{array}
$$

Cu cm
$=5720 \mathrm{cu} \mathrm{cm}$
Mass of $1 \mathrm{cu} \mathrm{cm}=0.6 \mathrm{~g}$
\therefore Mass of the pipe $=(0.6 \times 5720) g$
$=3432 \mathrm{~g}$
$=3.432 \mathrm{~kg}$
27. A patient in a hospital is given soup daily in a cylindrical bowl of a diameter 7 cm . If the bowl is filled with soup to height of 4 cm . How much soup the hospital has to prepare daily to serve $\mathbf{2 5 0}$ patients?

Ans. Diameter of the bowl $=7 \mathrm{~cm}$.

Radius of the bowl $=\frac{7}{2} \mathrm{~cm}$
Height up to which soup is filled $(h)=4 \mathrm{~cm}$.
Volume of the soup in one bowl $=\pi r^{2} h$

$$
=\frac{22}{7} \times \frac{7}{2} \times \frac{7}{2} \times 4 \mathrm{cu} \mathrm{~cm} .
$$

$=154 \mathrm{cu} \mathrm{cm}$
\therefore soup given to one patient $=154 \mathrm{cu} \mathrm{cm}$.
Soup given to 250 patients

$$
=250 \times 154 \mathrm{cu} \mathrm{~cm} .
$$

$=38500 \mathrm{cu} \mathrm{cm}$.

$$
=\frac{38500}{1000} \text { ltrs } \because
$$

ltrs $=1000$ сист
$=38.5 \mathrm{ltrs}$.
Hence the hospital has to prepare 38.5 litre daily to serve 250 patients.
28. The diameter of a roller is 84 cm and its length is 120 cm . It takes 500 complete revolutions to move once over to level a playground.
(a) Find the area of playground in sq m .
(b) Determine the cost of leveling the playground at the rate of Rs 1.75 per $\mathrm{sq} \mathbf{m}$.

Ans. (a) $R=$ Radius of the roller $=\frac{84}{2}$ Area $=42 \mathrm{~cm}$. as -0.42 m .
$\mathrm{H}=$ length of the roller $=120 \mathrm{~cm} .=1.2 \mathrm{~m}$.
Area covered in the revolution $=2 \pi r h s q$ unit

$$
=\frac{2 \times 22 \times 0.42 \times 1.2}{7}
$$

$=3.168 \mathrm{sq} \mathrm{m}$.
\therefore Area covered in 500 revolutions $=500 \times 3.168 \mathrm{sq} \mathrm{m}$.
$=1584 \mathrm{sq} \mathrm{m}$.
thus area of playground $=1584 \mathrm{sq} \mathrm{m}$.
(b) cost of leveling 1 sq m . of playground =Rs 1.75

Cost of total leveling $=\operatorname{Rs}(1584 \times 1.75)$
= Rs 2772
29. A metal cube of edge 12 cm is melted and formed into three similar cubes. If the edge of two smaller cubes is 6 cm and 8 cm , find the edge of the third smaller cube (Assuming that there is no loss of metal during melting).

Ans. Volume of cube with edge $12 \mathrm{~cm}=(12)^{3} \mathrm{cu} \mathrm{cm}$.
$=1728 \mathrm{cu} \mathrm{cm}$.
Volume of the first smaller cube with edge $6 \mathrm{~cm}=(6)^{3} \mathrm{cu} \mathrm{cm}$.
$=216 \mathrm{cu} \mathrm{cm}$.
Volume of the second smaller cube with edge $8 \mathrm{~cm} .=(8)^{3} \mathrm{cucm}$.
$=512 \mathrm{cu} \mathrm{cm}$.(iii)
Let the edge of the third smaller cube be a cm.
\therefore Volume of the third smaller cube $=$

$$
=9^{2} \mathrm{~cm}^{3} \rightarrow \text { (iv) }
$$

$216+512+\mathrm{a}^{3}=1728$ using (i) and (ii)
By the given condition.

$$
\text { area } \quad 728 a^{3}=1728
$$

Area

$$
\mathrm{a}^{3}=1728-728=1000=(10)^{3}
$$

$\therefore a=10$

Thus the edge of the third required cube is 10 cm .
30. How many bricks, each measuring 18 cm by 12 cm by 10 cm will be required to build a wall 15 m long 6 dm wide and 6.5 m high when $\frac{1}{10}$ of its volumes occupied by mastar? Please find the cost of the bricks to the nearest rupees, at Rs 1100 per 1000 bricks.

Ans. Length of the wall $=15 \mathrm{~m} .=1500 \mathrm{~cm}$.
Width of the wall $=6 \mathrm{dm} .=60 \mathrm{~cm}$.

Height of the wall $=6.5 \mathrm{~m} .=650 \mathrm{~cm}$.
\therefore Volume of the wall $=(1500 \times 60 \times 650) \mathrm{cu} \mathrm{cm}$.
$=58500000 \mathrm{cu} \mathrm{cm} . \rightarrow$ (I)
Volume occupied by mastar $=\left(\frac{1}{10} \times 58500000\right) \mathrm{cu} \mathrm{cm}$.
$=5850000 \mathrm{cu} \mathrm{cm} . \rightarrow$ (ii)
\therefore Volume occupied by bricks $=(\mathrm{i})$ - (ii)
$=(58500000-5850000) \mathrm{cu} \mathrm{cm}$.
$=52650000 \mathrm{cu} \mathrm{cm} . \rightarrow$ (iii)
Volume of a brick $=(18 \times 12 \times 10) \mathrm{cu} \mathrm{cm}$.
$=2160 \mathrm{cu} \mathrm{cm} . \rightarrow$ (iv)
\therefore No of brick required $=$ (iii) \div (iv)
$=\frac{52650000}{2160}$
$=24375$
cost of 1000 bricks $=$ Rs 1100
Total cost $=$ Rs $\frac{24375 \times 1100}{1000}$
= Rs 26812.50
= Rs 26813.
31. A river 3 m deep and 40 m wide is flowing at the rate of 2 km per hour. How much will fall into the sea in a minute?

Ans. Depth of river $=3 \mathrm{~m}$
Water of the river $=40 \mathrm{~m}$
Rate of flow of water $=2 \mathrm{~km} / \mathrm{hr}=2000 \mathrm{~m} / \mathrm{hr}$
\therefore Volume of water flowing in one hour

$$
\begin{aligned}
& =2000 \times 40 \times 3 \\
& =240000 \mathrm{~m}^{3}
\end{aligned}
$$

Hence Volume of water flowing in one minute $=$

$$
\frac{240000}{60}=4000 \mathrm{~m}^{3}
$$

32. If the lateral surface of a cylinder is $94.2 \mathrm{~cm}^{2}$ and its height is 5 cm . then find
(i) radius of its base (ii) its volume $[\pi=3.14]$

Ans. Given lateral surface of cylinder $=94.2 \mathrm{~cm}^{2}$

$$
2 \pi r h=94.2 \mathrm{~cm}^{2}
$$

$H=5 \mathrm{~cm}$
$2 \pi r \times 5=94.2$

$$
r=\frac{94.2}{10 \pi}=\frac{94.2}{10 \times 3.14} \mathrm{~cm}
$$

$$
\mathrm{R}=3 \mathrm{~cm}
$$

(ii) Volume of cylinder $=\pi r^{2} h$
$=3.14 \times 3^{2} \times 5$
$=141.3 \mathrm{~cm}^{3}$
33. A shot put is a metallic sphere of radius 4.9 cm If the density of the metal is $7.8 \mathbf{g}$ per cm^{3} Find the mass of the shot put.

Ans. Volume of sphere $=\frac{4}{3} \pi r^{3}$ and radius $r=4.9 \mathrm{~cm}$

$$
=\frac{4}{3} \times \frac{22}{7} \times 4.9 \times 4.9 \times 4.9 \mathrm{~cm}^{3}
$$

$=493 \mathrm{~cm}^{3}$
Mass of $1 \mathrm{~cm}^{3}$ of metal is 7.8 g
Mass of the shot put $=$ volume \times density
$=7.8 \times 493 \mathrm{~g}$

$$
=3845.44 \mathrm{~g}=3.85 \mathrm{~kg}
$$

34. The capacity of a hemispherical tank is $155.232 l$. Find its radius.

Ans. Capacity of tank $=$ Its Volume $=\frac{2}{3} \pi r^{3}$

$$
\begin{aligned}
& \frac{2}{3} \pi r^{3}=155.232 l \\
= & 155.232 \times 1000 \mathrm{~cm}^{3}
\end{aligned}
$$

$=155232 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& \frac{2}{3} \times \frac{22}{7} \times r^{3}=155232 \\
& r^{3}=\frac{155232 \times 3 \times 7}{2 \times 22}
\end{aligned}
$$

$$
\begin{aligned}
& r^{3}=3528 \times 3 \times 7 \\
& r^{3}=(2 \times 3 \times 7)^{3} \\
& r=2 \times 3 \times 7=42 \mathrm{~cm}
\end{aligned}
$$

Hence radius of tank $=42 \mathrm{~cm}$
35. What length of tarpaulin 3 m wide will required to make conical tent of height 8 m and base radius 6 m ? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately $20 \mathrm{~cm}[\pi=3.14]$

Ans. Here $h=8 m$ and $r=6 m$

$$
l=\sqrt{r^{2}+h^{2}}=\sqrt{36+64}=10 \mathrm{~m}
$$

Curved surface area $=\pi r l$

$$
=3.14 \times 6 \times 10=188.4 \mathrm{~m}^{2}
$$

Length of tarpaulin required

$$
=\frac{\text { area }}{\text { width }}=\frac{188.4}{3}
$$

$=62.8 \mathrm{~m}$
Extra length required for wastage $=20 \mathrm{~cm}=0.2 \mathrm{~m}$
Hence, total length required $=62.8+0.2$
$=63 \mathrm{~m}$
36. A capsule of medicine is in the shape of a sphere of diameter 3.5 mm How much medicine ($\mathrm{in} \mathrm{mm}^{3}$) is needed to fill this capsule?

Ans. Given radius of capsule $=\frac{3.5}{2} \mathrm{~mm}$
Amount of medicine $=$ Volume of capsule $=\frac{4}{3} \pi r^{3}$

$$
=\frac{4}{3} \times \frac{22}{7} \times \frac{(3.5)^{3}}{2} \mathrm{~mm}^{3}
$$

$$
\begin{aligned}
= & \frac{4}{3} \times \frac{22}{7} \times \frac{3.5}{2} \times \frac{3.5}{2} \times \frac{3.5}{2} \\
& =22.46 \mathrm{~mm}^{3}(\text { approx })
\end{aligned}
$$

37. A wall of length 10 m was to be built across an open ground. The height of wall is 4 m and thickness of the wall is 34 cm . If this wall is to be built up with bricks whose dimensions are

$$
24 \mathrm{~cm} \times 12 \mathrm{~cm} \times 8 \mathrm{~cm}
$$

How many bricks would be required
Ans. Length of wall $=10 \mathrm{~m}=1000 \mathrm{~cm}$
Thickness $=24 \mathrm{~cm}$
Height $=4 \mathrm{~m}=400 \mathrm{~cm}$
Volume of wall $=$ length \times thickness \times height

$$
=1000 \times 24 \times 400 \mathrm{~cm}^{3}
$$

Now each brick is a cuboid with length $=24 \mathrm{~cm}$
Breadth $=12 \mathrm{~cm}$ and height $=8 \mathrm{~cm}$
Volume of each brick $=l \times b \times h=24 \times 12 \times 8 \mathrm{~cm}^{3}$
Number of bricks required $=$

$$
\begin{aligned}
& \frac{\text { volume of the wall }}{\text { volume of each brick }} \\
& =\frac{1000 \times 24 \times 400}{24 \times 12 \times 8}
\end{aligned}
$$

$$
=4166.6
$$

The wall requires 4167 bricks.
38. The pillars of a temple are cylindrically shaped if each pillar has a circular base of radius 20 cm and height 10 m . How much concrete mixture would be required to build 14 such pillars?

Ans. Radius of base of cylinder $=20 \mathrm{~cm}$
Height of pillar $=10 \mathrm{~m}=1000 \mathrm{~cm}$
Volume of each cylinder $=\pi r^{2} h$

$$
\begin{gathered}
=\frac{22}{7} \times 20 \times 20 \times 1000 \mathrm{~cm}^{3} \\
=\frac{8800000}{7} \mathrm{~cm}^{3} \\
=\frac{8.8}{7} \mathrm{~m}^{3}\left[\therefore 1000000 \mathrm{~cm}^{3}=1 \mathrm{~m}^{3}\right]
\end{gathered}
$$

\therefore Volume of 14 pillars $=$ volume of each cylinder $\times 14$

$$
=\frac{8.8}{7} \times 14 \mathrm{~cm}^{3}=17.6 \mathrm{~m}^{3}
$$

So 14 pillars would need $17.6 m^{3}$ of concrete mixture.
39. A right triangle $A B C$ with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$, and 13 cm is revolved about the side 12 cm , find the volume of the solid so obtained

Ans. The solid obtained by revolving the given right triangle is a right circular cone with radius $=5 \mathrm{~cm}$.

And height $=12 \mathrm{~cm}$
\therefore Volume of solid $=\frac{1}{3} \pi r^{2} h$

$$
=\frac{1}{3} \pi \times 5^{2} \times 12=100 \pi \mathrm{~cm}^{3}
$$

40. The inner diameter of a circular well is 3.5 cm . It is 10 m deep find.
(i) Its inner curved surface area.
(ii) the cost of plastering this curved surface at the rate of Rs 40 per

Ans. Given Inner diameter of well $=3.5 \mathrm{~m}$
\therefore Inner radius $=\frac{3.5}{2}=\frac{7}{4} m$
$r=\frac{7}{4} m$ and depth $h=10 m$
(i) \therefore Inner surface area $=2 \pi r h$

$$
=2 \times \frac{22}{Z} \times \frac{\nabla}{4^{8}} \times 1 Q^{5}=110 \mathrm{~m}^{2}
$$

(ii) The cost of plastering is Rs 40 per m^{2}
\therefore Cost of plastering this surface area $=$ Rs 40×110
$=$ Rs 4400

41. A Godown measures

$$
40 m \times 25 m \times 10 m
$$

Find the maximum number of wooden crates each measuring

$$
10 m \times 1.25 m \times 0.5 m
$$

that can be stored in the go down

Ans. Dimensions of Go down

$$
=40 \mathrm{~m} \times 25 \mathrm{~m} \times 10 \mathrm{~m}
$$

Volume of Go down

$$
=40 \mathrm{~m} \times 25 \mathrm{~m} \times 10 \mathrm{~m}
$$

$$
=10000 \mathrm{~m}^{3}
$$

volume of wooden carts

$$
=10 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5 \mathrm{~m}
$$

$$
=6.25 \mathrm{~m}^{3}
$$

No. of wooden crates $=\frac{10,000}{6.25}$

$$
=\frac{10 ; 000^{40} \times 10 Q^{20}}{62 \Sigma^{25}}=800
$$

Hence, 800 wooden crates are required.
42. The volume of a right circular cylinder is $576 \pi \mathrm{~cm}^{3}$ and radius of its base is 8 cm . Find the total surface area of the cylinder.

Ans. Volume of cylinder $=576 \pi \mathrm{~cm}^{3}$

$$
r=8 \mathrm{~cm}
$$

Volume of cylinder $=\pi r^{2} h$

$$
\pi r^{2} h=576 \pi
$$

$$
h=\frac{576}{r^{2}}=\frac{576}{8^{2}}=9
$$

$\mathrm{H}=9 \mathrm{~cm}$
\therefore Total surface area $=2 \pi r(r+h)$

$$
\begin{gathered}
=2 \times \frac{22}{7} \times(8+9) \mathrm{cm}^{2} \\
=\frac{16 \times 22 \times 17}{7} \mathrm{~cm}^{2}
\end{gathered}
$$

$=854.989 \mathrm{~cm}$

4 Marks Quetions

1. Shanti Sweets Stall was placing an order for making cardboard boxes for packing their sweets. Two sizes of boxes were required. The bigger of dimensions 25 cm by 20 cm by 5 cm and the smaller of dimensions 15 cm by 12 cm by $5 \mathrm{~cm} .5 \%$ of the total surface area is required extra, for all the overlaps. If the cost of the card board is Rs. 4 for $1000 \mathrm{~cm}^{2}$, find the cost of cardboard required for supplying 250 boxes of each kind.

Ans. Given: Length of bigger cardboard box $(\mathrm{L})=25 \mathrm{~cm}$
Breadth $(B)=20 \mathrm{~cm}$ and Height $(H)=5 \mathrm{~cm}$
Total surface area of bigger cardboard box

$$
=2(\mathrm{LB}+\mathrm{BH}+\mathrm{HL})
$$

$$
=2(25 \times 20+20 \times 5+5 \times 25)
$$

$=2(500+100+125)$
$=1450 \mathrm{~cm}^{2}$
5% extra surface of total surface area is required for all the overlaps.

$$
\Rightarrow 5 \% \text { of } 1450=\frac{5}{100} \times 1450=72.5 \mathrm{~cm}^{2}
$$

Now, total surface area of bigger cardboard box with extra overlaps
$=1450+72.5=1522.5 \mathrm{~cm}^{2}$
\Rightarrow Total surface area with extra overlaps of 250 such boxes

$$
=250 \times 1522.5
$$

$=380625 \mathrm{~cm}^{2}$
Since, Cost of the cardboard for $1000 \mathrm{~cm}^{2}=$ Rs. 4
\therefore Cost of the cardboard for $1 \mathrm{~cm}^{2}=$ Rs. $\frac{4}{1000}$
\therefore Cost of the cardboard for $380625 \mathrm{~cm}^{2}=$ Rs. $\frac{4}{1000} \times 380625=$ Rs. 1522.50

Now length of the smaller box $(l)=15 \mathrm{~cm}$,
Breadth $(b)=12 \mathrm{~cm}$ and Height $(h)=5 \mathrm{~cm}$
Total surface area of the smaller cardboard box
$=2(l b+b h+h l)$

$$
=2(15 \times 12+12 \times 5+5 \times 15)
$$

$=2(180+60+75)$
$=2 \times 315=630 \mathrm{~cm}^{2}$
5% of extra surface of total surface area is required for all the overlaps.
$\therefore 5 \%$ of $630=\frac{5}{100} \times 630=31.5 \mathrm{~cm}^{2}$
Total surface area with extra overlaps $=630+31.5=661.5 \mathrm{~cm}^{2}$
Now Total surface area with extra overlaps of 250 such smaller boxes

$$
=661.5 \times 250=165375 \mathrm{~cm}^{2}
$$

Cost of the cardboard for $1000 \mathrm{~cm}^{2}=$ Rs. 4
Cost of the cardboard for $1 \mathrm{~cm}^{2}=$ Rs. $\frac{4}{1000}$
Cost of the cardboard for $165375 \mathrm{~cm}^{2}=$ Rs. $\frac{4}{1000} \times 165375=$ Rs. 661.50
\therefore Total cost of the cardboard required for supplying 250 boxes of each kind
$=$ Total cost of bigger boxes + Total cost of smaller boxes
$=$ Rs. 1522.50 + Rs. 661.50
$=$ Rs. 2184

2. Find:

(i) the lateral or curved surface area of a petrol storage tank that is 4.2 m in diameter and 4.5 m high.
(ii) how much steel was actually used if $\frac{1}{12}$ of the steel actually used was wasted in making the tank?

Ans. (i) Diameter of cylindrical petrol tank $=4.2 \mathrm{~m}$
\therefore Radius of the cylindrical petrol tank $=\frac{4.2}{2}=2.1 \mathrm{~m}$
And Height of the tank $=4.5 \mathrm{~m}$
\therefore Curved surface area of the cylindrical tank $=2 \pi r h=$

$$
2 \times \frac{22}{7} \times 2.1 \times 1.45
$$

$=59.4 \mathrm{~m}^{2}$
(ii) Let the actual area of steel used be x meters

Since $\frac{1}{12}$ of the actual steel used was wasted, the area of steel which has gone into the tank.

$$
\begin{aligned}
& =x-\frac{1}{12} x=\frac{11}{12} x \\
& \therefore \quad \frac{11}{12} x=59.4 \\
& \Rightarrow \quad x=59.4 \times \frac{12}{11}=64.8 \mathrm{~m}^{2}
\end{aligned}
$$

Hence steel actually used is $64.8 \mathrm{~m}^{2}$.
3. A hemispherical bowl made of brass has inner diameter 10.5 cm . Find the cost of tin-plating it on the inside at the rate of Rs. 16 per $100 \mathrm{~cm}^{2}$.

Ans. Inner diameter of bowl $=10.5 \mathrm{~cm}$
\therefore Inner radius of bowl $(r)=\frac{10.5}{2}=5.25 \mathrm{~cm}$
Now, Inner surface area of bowl $=2 \pi r^{2}$
=

$$
2 \times \frac{22}{7} \times 5.25 \times 5.25
$$

$=$

$$
2 \times \frac{22}{7} \times \frac{21}{4} \times \frac{21}{4}
$$

$=\frac{693}{4} \mathrm{~cm}^{2}$
\because Cost of tin-plating per $100 \mathrm{~cm}^{2}=$ Rs. 16
\therefore Cost of tin-plating per $1 \mathrm{~cm}^{2}=\frac{16}{100}$
\therefore Cost of tin-plating per $\frac{693}{4} \mathrm{~cm}^{2}=\frac{16}{100} \times \frac{693}{4}=$ Rs. 27.72
4. The diameter of the moon is approximately one fourth the diameter of the earth. Find the ratio of their surface areas.

Ans. Let diameter of Earth $=x$
\therefore Radius of Earth $(r)=\frac{x}{2}$
\therefore Surface area of Earth $=4 \pi r^{2}=4 \pi \times \frac{x}{2} \times \frac{x}{2}=\pi x^{2}$

Now, Diameter of Moon $=\frac{1}{4}$ th of diameter of Earth $=\frac{x}{4}$
\therefore Radius of Moon $(r)=\frac{x}{8}$
Surface area of Moon $=4 \pi r^{2}=4 \pi \times \frac{x}{8} \times \frac{x}{8}=\frac{\pi x^{2}}{16}$
Now, Ratio =

$$
\begin{aligned}
& = \\
& \frac{\text { Surface area of Moon }}{\text { Surface area of Earth }} \\
& =\frac{\pi x^{2}}{16} \times \frac{1}{\pi x^{2}}=\frac{1}{16}
\end{aligned}
$$

\therefore Required ratio $=1: 16$
5. A solid cube of side 12 cm is cut into eight cubes of equal volume. What will be the side of the new cube? Also, find the ratio between their surface areas.

Ans. Volume of solid cube $=(\text { side })^{3}=(12)^{3}=1728 \mathrm{~cm}^{3}$
According to question, Volume of each new cube $=\frac{1}{8}$ (Volume of original cube)
$=\frac{1}{8} \times 1728=216 \mathrm{~cm}^{3}$
\therefore Side of new cube $=\sqrt[3]{216}=6 \mathrm{~cm}$
Now, Surface area of original solid cube $=6(\text { side })^{2}$

$$
=6 \times 12 \times 12=864 \mathrm{~cm}^{2}
$$

Now, Surface area of original solid cube $=6(\text { side })^{2}$
$=6 \times 6 \times 6=216 \mathrm{~cm}^{3}$

Now according to the question,

$$
\frac{\text { Surface area of original cube }}{\text { Surface area of new cube }}
$$

$=\frac{864}{216}=\frac{4}{1}$
Hence required ration between surface area of original cube to that of new cube $=4: 1$.
6. The volume of a right circular cone is $9856 \mathrm{~cm}^{3}$. If the diameter of the base if 28 cm , find:
(i) Height of the cone
(ii) Slant height of the cone
(iii) Curved surface area of the cone.

Ans. (i) Diameter of cone $=28 \mathrm{~cm}$
\therefore Radius of cone $=14 \mathrm{~cm}$
Volume of cone $=9856 \mathrm{~cm}^{3}$

$\Rightarrow \quad \frac{1}{3} \pi r^{2} h=9856$

$$
\Rightarrow
$$

$$
\frac{1}{3} \times \frac{22}{7} \times 14 \times 14 \times h=9856
$$

$$
\Rightarrow
$$

$$
h=\frac{9856 \times 3 \times 7}{22 \times 14 \times 14}
$$

$=48 \mathrm{~cm}$
(ii) Slant height of cone $(l)=\sqrt{r^{2}+h^{2}}$
$=$

$$
\sqrt{(14)^{2}+(48)^{2}}
$$

$=\sqrt{196+2304}$
$=\sqrt{2500}=50 \mathrm{~cm}$
(iii) Curved surface area of cone $=\pi r l$
$=\frac{22}{7} \times 14 \times 50=2200 \mathrm{~cm}^{2}$
7. The front compound wall of a house is decorated by wooden spheres of diameter 21 cm , placed on small supports as shown in figure. Eight such spheres are used for this purpose and are to be painted silver. Each support is a cylinder of radius 1.5 cm and height 7 cm and is to be painted black. Find he cost of paint required if silver paint costs 25 paise per cm^{2} and black paint costs 5 paise per cm^{2}.

Ans. Diameter of a wooden sphere $=21 \mathrm{~cm}$.
\therefore Radius of wooden sphere $(\mathrm{R})=\frac{21}{2} \mathrm{~cm}$
And Radius of the cylinder $(r)=1.5 \mathrm{~cm}$
Surface area of silver painted part = Surface area of sphere - Upper part of cylinder for support
$=4 \pi \mathrm{R}^{2}-\pi r^{2}$
$=\pi\left(4 \mathrm{R}^{2}-r^{2}\right)$
$=$

$$
\frac{22}{7} \times\left[4 \times\left(\frac{21}{2}\right)^{2}-\left(\frac{15}{10}\right)^{2}\right]
$$

$=$

$$
\frac{22}{7} \times\left[\frac{4 \times 441}{4}-\frac{9}{4}\right]
$$

$=\frac{22}{7}\left[\frac{1764-9}{4}\right]$
$=\frac{22}{7} \times \frac{1755}{4}=1378.928 \mathrm{~cm}^{2}$
Surface area of such type of 8 spherical part $=8 \times 1378.928$

$$
=11031.424 \mathrm{~cm}^{2}
$$

\because Cost of silver paint over $1 \mathrm{~cm}^{2}=$ Rs. 0.25
\therefore Cost of silver paint over

$$
11031.928 \mathrm{~cm}^{2}
$$

$=$

$$
0.25 \times 11031.928
$$

$=$ Rs. 2757.85
Now, curved surface area of a cylindrical support $=2 \pi r h$
$=2 \times \frac{22}{7} \times \frac{15}{10} \times 7=66 \mathrm{~cm}^{2}$
Curved surface area of 8 such cylindrical supports

$$
=66 \times 8=528 \mathrm{~cm}^{2}
$$

\because Cost of black paint over $1 \mathrm{~cm}^{2}$ of cylindrical support $=$ Rs. 0.50
\therefore Cost of black paint over $528 \mathrm{~cm}^{2}$ of cylindrical support $=0.50 \times 528$
$=$ Rs. 26.40
\therefore Total cost of paint required $=$ Rs. $2757.85+$ Rs. 26.4
$=$ Rs. 2784.25
8. The difference between outside and inside surface of a cylindrical metallic tripe 14 cm . long is 44 sq cm . if the tripe is made of 99 cu cm . of metal, find the outer and inner radius of the tripe.

Ans. Let $r_{1} \mathrm{~cm}$ and $\mathrm{r}_{2} \mathrm{~cm}$ can be the inner and outer radii respectively of the pipe Area of the outside surface $=$ Area of the inside surface $=$ By the given condition

$$
-=44
$$

or

Or,

Again volume of the metal used in the pipe $=$ (given)
or,

Dividing (ii) by (i) we get

Or,

Also, From (i)

Adding

And,

Or,
Thus outer radius $=2.5 \mathrm{~cm}$
And inner radius $=2 \mathrm{~cm}$
9. The ratio between the radius of the base and height of a cylinder is 2:3. find the total surface area of the cylinder if its volume is 1617

Ans. Let the radius of the base of the cylinder be $2 x \mathrm{~cm}$.
Height of the cylinder $=3 x \mathrm{~cm}$.
Volume of the cylinder $=$
or
Thus radius

Total surface area
$=770 \mathrm{sq} \mathrm{cm}$.
thus total surface area of the cylinder $=770 \mathrm{sq} \mathrm{cm}$.
10. Twenty-seven solid iron spheres, each of radius r and surface area S are melted to form a sphere with surface area S' find the
(i) radius r' of the new sphere
(ii) ratio of S and

Ans. Total volume of 27 iron spheres =Volume of new sphere Volume of each original sphere =
Volume of 27 spheres =
Volume of new sphere

