Chapter 5 Introduction to Euclid's Geometry Class 9 Important Questions NCERT Maths

Question 1.

Define :
(a) a square (b) perpendicular lines.

Solution:

(a) A square : A square is a rectangle having same length and breadth. Here, undefined terms are length, breadth and rectangle.
(b) Perpendicular lines : Two coplanar (in a plane) lines are perpendicular, if the angle between them at the point of intersection is one right angle. Here, the term one right angle is undefined.

Question 2.
In the given figure, name the following :
(i) Four collinear points
(ii) Five rays
(iii) Five line segments
(iv) Two-pairs of non-intersecting line segments.

Solution:
(i) Four collinear points are D, E, F, G and

H, I, J, K
(ii) Five rays are DG, EG, FG, HK, IK.
(iii) Five line segments are DH, EI, FJ;

DG, HK.
(iv) Two-pairs of non-intersecting line segments are (DH, EI) and (DG, HK).

Question 3.
In the given figure, $\mathrm{AC}=\mathrm{DC}$ and CB

$=$ CE. Show that AB = DE. Write the Euclid's axiom to support this.

Solution:
We have
$\mathrm{AC}=\mathrm{DC}$
$C B=C E$
By using Euclid's axiom 2, if equals are added to

equals, then wholes are equal.
$\Rightarrow \mathrm{AC}+\mathrm{CB}=\mathrm{DC}+\mathrm{CE}$
$\Rightarrow \mathrm{AB}=\mathrm{DE}$.

Question 4.

In figure, it is given that $\mathrm{AD}=\mathrm{BC}$. By which Euclid's axiom it can be proved that $\mathbf{A C}=\mathbf{B D}$?

Solution:

We can prove it by Euclid's axiom 3. "If equals are subtracted from equals, the remainders are equal."
We have $\mathrm{AD}=\mathrm{BC}$
$\Rightarrow \mathrm{AD}-\mathrm{CD}=\mathrm{BC}-\mathrm{CD}$
$\Rightarrow \mathrm{AC}=\mathrm{BD}$

Question 5.

In the given figure, $A B=B C, B X=B Y$, show that
$\mathbf{A X}=\mathbf{C Y}$.

Solution:
Given that $\mathrm{AB}=\mathrm{BC}$
and BX = BY
By using Euclid's axiom 3, equals subtracted from equals, then the remainders are equal, we have
$\mathrm{AB}-\mathrm{BX}=\mathrm{BC}-\mathrm{BY}$
$A X=C Y$

Question 6.

In the above figure, if $A B=P Q$,

$P Q=X Y$, then $A B=X Y$. State
True or False. Justify your answer.

Solution:

True. \because By Euclid's first axiom "Things which are equal to the same thing are equal to one another".
$\therefore \mathrm{AB}=\mathrm{PQ}$ and $\mathrm{XY}=\mathrm{PQ} \Rightarrow \mathrm{AB}=\mathrm{XY}$

Question 7.

In the given figure, if $\angle 1=\angle 3, \angle 2=\angle 4$ and $\angle 3=\angle 4$, write the relation between $\angle 1$ and $\angle 2$, using an Euclid's axiom.

Solution:

Here, $\angle 3=\angle 4, \angle 1=\angle 3$ and $\angle 2=\angle 4$. Euclid's first axiom says, the things which are equal to equal thing are equal to one another. So $\angle 1=\angle 2$.,

Question 8.

In the given figure, we have $\angle 1=\angle 2, \angle 3=\angle 4$.
Show that $\angle A B C=\angle D B C$. State the Euclid's
Axiom used.
Solution:
Here, we have $1=\angle 2$ and $\angle 3=\angle 4$. By using Euclid's
Axiom 2. If equals are added to

equals, then the wholes are equal..
$\angle 1+\angle 3=\angle 2+\angle 4$
$\angle \mathrm{ABC}=\angle \mathrm{DBC}$.

Question 9.

In the figure, we have $B X$ and $12 A B=12 B C$. Show that $B X=B Y$.

Solution:

Here, $\mathrm{BX}=12 \mathrm{AB}$ and $\mathrm{BY}=12 \mathrm{BC} \ldots$ (i) [given]
Also, $\mathrm{AB}=\mathrm{BC}$ [given]
$\Rightarrow 12 \mathrm{AB}=12 \mathrm{BC}$
[\because Euclid's seventh axiom says, things which are halves of the same thing are equal to one another]
From (i) and (ii), we have BX $=\mathrm{BY}$

Question 10.

In the given figure, $A C=X D, C$ is mid-point of $A B$ and D is mid-point of $X Y$. Using an Euclid's axiom, show that $\mathbf{A B}=X Y$.

Solution:

$\because C$ is the mid-point of $A B$
$\mathrm{AB}=2 \mathrm{AC}$
Also, D is the mid-point of XY
$\mathrm{XY}=2 \mathrm{XD}$

By Euclid's sixth axiom "Things which are double of same things are equal to one another."
$\therefore \mathrm{AC}=\mathrm{XD}=2 \mathrm{AC}=2 \mathrm{XD} \Rightarrow \mathrm{AB}=\mathrm{XY}$

