Chapter 5 Introduction to Euclid's Geometry Class 9 Important Questions NCERT Maths

Question 1. Define : (a) a square (b) perpendicular lines. Solution:

(a) A square : A square is a rectangle having same length and breadth. Here, undefined terms are length, breadth and rectangle.

(b) Perpendicular lines : Two coplanar (in a plane) lines are perpendicular, if the angle between them at the point of intersection is one right angle. Here, the term one right angle is undefined.

Question 2.

In the given figure, name the following : (i) Four collinear points (ii) Five rays (iii) Five line segments (iv) Two-pairs of non-intersecting line segments.

Solution:

(i) Four collinear points are D, E, F, G and H, I, J, K
(ii) Five rays are DG, EG, FG, HK, IK.
(iii) Five line segments are DH, EI, FJ; DG, HK.
(iv) Two-pairs of non-intersecting line

segments are (DH, EI) and (DG, HK).

Question 3.

In the given figure, AC = DC and CB

= CE. Show that AB = DE. Write the Euclid's axiom to support this.

Solution:

We have AC = DC

AC = DCCB = CE

By using Euclid's axiom 2, if equals are added to

equals, then wholes are equal. $\Rightarrow AC + CB = DC + CE$ $\Rightarrow AB = DE.$

Question 4. In figure, it is given that AD=BC. By which Euclid's axiom it can be proved that AC = BD?

Ā Solution: Ď Č Ď We can prove it by Euclid's axiom 3. "If equals are subtracted from equals, the remainders are equal." We have AD = BC \Rightarrow AD - CD = BC - CD $\Rightarrow AC = BD$ **Question 5.** In the given figure, AB = BC, BX = BY, show that AX = CY.Solution: Given that AB = BCand BX = BYBy using Euclid's axiom 3, equals subtracted from equals, then the remainders are equal, we have AB - BX = BC - BYAX = CY**Question 6.** Ър άx In the above figure, if AB = PQ, Á PQ = XY, then AB = XY. State True or False. Justify your answer.

Solution:

True. \therefore By Euclid's first axiom "Things which are equal to the same thing are equal to one another".

 \therefore AB = PQ and XY = PQ \Rightarrow AB = XY

Question 7.

In the given figure, if $\angle 1 = \angle 3$, $\angle 2 = \angle 4$ and $\angle 3 = \angle 4$, write the relation between $\angle 1$ and $\angle 2$, using an Euclid's axiom.

Solution:

Here, $\angle 3 = \angle 4$, $\angle 1 = \angle 3$ and $\angle 2 = \angle 4$. Euclid's first axiom says, the things which are equal to equal thing are equal to one another. So $\angle 1 = \angle 2$.,

Question 8.

In the given figure, we have $\angle 1 = \angle 2$, $\angle 3 = \angle 4$. Show that $\angle ABC = \angle DBC$. State the Euclid's Axiom used. Solution: Here, we have $1 = \angle 2$ and $\angle 3 = \angle 4$. By using Euclid's Axiom 2. If equals are added to equals, then the wholes are equal.. $\angle 1 + \angle 3 = \angle 2 + \angle 4$

Question 9. In the figure, we have BX and 12 AB =12 BC. Show that BX = BY.

Solution:

 $\angle ABC = \angle DBC.$

Here, BX = 12 AB and BY = 12 BC ...(i) [given] Also, AB = BC [given] \Rightarrow 12AB = 12BC ...(ii) [\because Euclid's seventh axiom says, things which are halves of the same thing are equal to one another] From (i) and (ii), we have BX = BY

Question 10.

In the given figure, AC = XD, C is mid-point of AB and D is mid-point of XY. Using an Euclid's axiom, show that AB = XY.

Solution:

∴ C is the mid-point of AB AB = 2AC Also, D is the mid-point of XY XY = 2XD By Euclid's sixth axiom "Things which are double of same things are equal to one another." ∴ AC = XD = 2AC = 2XD \Rightarrow AB = XY

