Important Questions Class 10 Maths Chapter 7 Coordinate Geometry

Q. 1: Find the distance of the point $P(2,3)$ from the x-axis.

Solution:

We know that,
$(x, y)=(2,3)$ is a point on the Cartesian plane in the first quadrant.
$\mathrm{x}=$ Perpendicular distance from y -axis
$\mathrm{y}=$ Perpendicular distance from x -axis
Therefore, the perpendicular distance from x -axis $=\mathrm{y}$ coordinate $=3$
Q. 2: Find a relation between x and y such that the point (x, y) is equidistant from the points $(7,1)$ and $(3,5)$.

Solution:

Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be equidistant from the points $\mathrm{A}(7,1)$ and $\mathrm{B}(3,5)$.
Then, $\mathrm{AP}=\mathrm{BP}$
$\mathrm{AP}^{2}=\mathrm{BP}^{2}$
Using distance formula,
$(x-7)^{2}+(y-1)^{2}=(x-3)^{2}+(y-5)^{2}$
$x^{2}-14 x+49+y^{2}-2 y+1=x^{2}-6 x+9+y^{2}-10 y+25$
$x-y=2$
Hence, the relation between x and y is $\mathrm{x}-\mathrm{y}=2$.
Q. 3: Find the coordinates of the points of trisection (i.e., points dividing into three equal parts) of the line segment joining the points $\mathbf{A}(2,-2)$ and $\mathbf{B}(-7$, 4).

Solution:

Let P and Q be the points of trisection of AB , i.e., $\mathrm{AP}=\mathrm{PQ}=\mathrm{QB}$.
Therefore, P divides AB internally in the ratio $1: 2$.

Let $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=(2,-2)$
$\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)=(-7,4)$

$\mathrm{m}_{1}: \mathrm{m}_{2}=1: 2$
Therefore, the coordinates of P , by applying the section formula,
$\backslash\left(\backslash\right.$ begin $\{\operatorname{array}\}\{1\} \backslash \operatorname{left}\left(\backslash \operatorname{frac}\left\{\mathrm{m} _\{1\} \mathrm{x} _\{2\}+\mathrm{m} _\{2\} \mathrm{x} _\{1\}\right\}\left\{\mathrm{m} _\{1\}+\mathrm{m} _\{2\}\right\}, \backslash\right.$ frac\{m_\{1\} y_\{2\}+m_\{2\} y_\{1\}\}\{m_\{1\}+m_\{2\}\}\right)\end\{array\} \) }
$\backslash(\backslash$ begin $\{$ array $\}\{1\}=\backslash$ left \backslash lfloor \backslash frac $\{1(-7)+2(2)\}\{1+2\}, \backslash$ frac $\{1(4)+2(-2)\}\{1+2\} \backslash$ right \backslash rfloor \backslash end $\{$ array $\} \backslash)$
$=(-3 / 3,0 / 3)$
$=(-1,0)$
Similarly, Q also divides AB internally in the ratio $2: 1$. and the coordinates of Q by applying the section formula,
$\backslash(\backslash$ begin $\{$ array $\}\{1\}=\backslash$ left \backslash lfloor \backslash frac $\{2(-7)+1(2)\}\{2+1\}, \backslash$ frac $\{2(4)+1(-2)\}\{2+1\} \backslash$ right \backslash rfloor \backslash end $\{$ array $\} \backslash)$
$=(-12 / 3,6 / 3)$
$=(-4,2)$
Hence, the coordinates of the points of trisection of the line segment joining A and B are $(-1,0)$ and $(-4,2)$.
Q. 4: Find the ratio in which the line segment joining the points $(-3,10)$ and $(6,-8)$ is divided by $(-1,6)$.

Solution:

Let the ratio in which the line segment joining $(-3,10)$ and $(6,-8)$ is divided by point $(-1$, 6) be k:1.

Therefore by section formula,
$\backslash\left(\backslash\right.$ begin $\{\operatorname{array}\}\{l\} \backslash \operatorname{left}\left(\backslash\right.$ frac $\left\{\mathrm{k} \mathrm{x}_{-}\{2\}+\mathrm{x} _\{1\}\right\}\{\mathrm{k}+1\}, \backslash \operatorname{frac}\left\{\mathrm{k} \mathrm{y}_{-}\{2\}+\mathrm{y} _\{1\}\right\}$
$\{\mathrm{k}+1\} \backslash$ right $) \backslash$ end $\{$ array $\} \backslash)$
$-1=(6 k-3) /(k+1)$
$-\mathrm{k}-1=6 \mathrm{k}-3$
$7 \mathrm{k}=2$
$\mathrm{k}=2 / 7$

Hence, the required ratio is $2: 7$.

Q. 5: Find the value of k if the points $A(2,3), B(4, k)$ and $C(6,-3)$ are collinear.

Solution:

Given,
$A(2,3)=\left(x_{1}, y_{1}\right)$
$B(4, k)=\left(x_{2}, y_{2}\right)$
$C(6,-3)=\left(x_{3}, y_{3}\right)$
If the given points are collinear, the area of the triangle formed by them will be 0 .

```
\(1 / 2\left[\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right]=\mathrm{o}\)
\(1 / 2[2(k+3)+4(-3-3)+6(3-k)]=0\)
\(1 / 2[2 k+6-24+18-6 k]=0\)
\(1 / 2(-4 \mathrm{k})=0\)
\(4 \mathrm{k}=0\)
\(\mathrm{k}=\mathrm{o}\)
```

Q. 6: Find the area of the triangle formed by joining the mid-points of the sides of the triangle whose vertices are $(0,-1),(2,1)$ and $(0,3)$. Find the ratio of this area to the area of the given triangle.

Solution:

Let the vertices of the triangle be $\mathrm{A}(0,-1), \mathrm{B}(2,1)$ and $\mathrm{C}(0,3)$.
Let D, E, F be the mid-points of the sides of this triangle.
Using the mid-point formula, coordinates of D, E, and F are:
$\mathrm{D}=[(\mathrm{o}+2) / 2,(-1+1) / 2]=(1,0)$
$\mathrm{E}=[(\mathrm{O}+\mathrm{o}) / 2,(-1+3) / 2]=(0,1)$
$\mathrm{F}=[(\mathrm{O}+2) / 2,(3+1) / 2]=(1,2)$

We know that,
Area of triangle $=1 / 2\left[x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right]$
Area of triangle DEF $=1 / 2\{(1(2-1)+1(1-0)+O(0-2)\}$
$=1 / 2(1+1)$
$=1$
Area of triangle DEF = 1 sq.unit
Area of triangle $\mathrm{ABC}=1 / 2\{\mathrm{O}(1-3)+2(3-(-1))+\mathrm{O}(-1-1)\}$
$=1 / 2(8)$
$=4$
Area of triangle $\mathrm{ABC}=4$ sq. units
Hence, the ratio of the area of triangle DEF and $\mathrm{ABC}=1: 4$.
Q. 7: Name the type of triangle formed by the points $A(-5,6), B(-4,-2)$ and C $(7,5)$.

Solution:

The points are $\mathrm{A}(-5,6), \mathrm{B}(-4,-2)$ and $\mathrm{C}(7,5)$.
Using distance formula,
$d=\sqrt{ }\left(\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}\right)$
$A B=\sqrt{ }\left((-4+5)^{2}+(-2-6)^{2}\right)$
$=\sqrt{ }(1+64)$
$=\sqrt{ } 65$
$B C=\sqrt{ }\left((7+4)^{2}+(5+2)^{2}\right)$
$=\sqrt{ }(121+49)$
$=\sqrt{ } 170$
$\mathrm{AC}=\sqrt{ }\left((7+5)^{2}+(5-6)^{2}\right)$
$=\sqrt{ } 144+1$
$=\sqrt{ } 145$
Since all sides are of different lengths, ABC is a scalene triangle.
Q.8: Find the area of triangle $P Q R$ formed by the points $P(-5,7), Q(-4,-5)$ and $\mathbf{R}(4,5)$.

Solution:

Given,
$P(-5,7), Q(-4,-5)$ and $R(4,5)$
Let $\mathrm{P}(-5,7)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{Q}(-4,-5)=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$R(4,5)=\left(x_{3}, y_{3}\right)$
Area of the triangle PQR $=(1 / 2)\left|\mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right)\right|$
$=(1 / 2)|-5(-5-5)+(-4)(5-7)+4(7+5)|$
$=(1 / 2)|-5(-10)-4(-2)+4(12)|$
$=(1 / 2)|50+8+48|$
$=(1 / 2) \times 106$
$=53$
Therefore, the area of triangle PQR is 53 sq. units.
Q.9: If the point $C(-1,2)$ divides internally the line segment joining $A(2,5)$ and $B(x, y)$ in the ratio $3: 4$, find the coordinates of B.

Solution:

Given,
$C(-1,2)$ divides internally the line segment joining $A(2,5)$ and $B(x, y)$ in the ratio $3: 4$. Here,
$\mathrm{A}(2,5)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$B(x, y)=\left(x_{2}, y_{2}\right)$
$\mathrm{m}: \mathrm{n}=3: 4$
Using section formula,
$\mathrm{C}(-1,2)=\left[\left(\mathrm{mx}_{2}+\mathrm{nx}_{1}\right) /(\mathrm{m}+\mathrm{n}),\left(\mathrm{my}_{2}+\mathrm{ny}_{1}\right) /(\mathrm{m}+\mathrm{n})\right]$
$=[(3 x+8) /(3+4),(3 y+20) /(3+7)]$
By equating the corresponding coordinates,
$(3 x+8) / 7=-1$
$3 x+8=-7$
$3 x=-7-8$
$3 x=-15$
$x=-5$
And
$(3 y+20) / 7=2$
$3 y+20=14$
$3 y=14-20$
$3 y=-6$
$y=-2$
Therefore, the coordinates of $\mathrm{B}(\mathrm{x}, \mathrm{y})=(-5,-2)$.
Q.10: Find the ratio in which the line $x-3 y=o$ divides the line segment joining the points $(-2,-5)$ and $(6,3)$. Find the coordinates of the point of intersection.

Solution:

Let the given points be:
$\mathrm{A}(-2,-5)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$B(6,3)=\left(x_{2}, y_{2}\right)$
The line $\mathrm{x}-3 \mathrm{y}=\mathrm{o}$ divides the line segment joining the points A and B in the ratio $\mathrm{k}: 1$.
Using section formula,
Point of division $\mathrm{P}(\mathrm{x}, \mathrm{y})=\left[\left(\mathrm{kx}_{2}+\mathrm{x}_{1}\right) /(\mathrm{k}+1),\left(\mathrm{ky}_{2}+\mathrm{y}_{1}\right) /(\mathrm{k}+1)\right]$
$\mathrm{x}=(6 \mathrm{k}-2) /(\mathrm{k}+1)$ and $\mathrm{y}=(3 \mathrm{k}-5) /(\mathrm{k}+1)$
Here, the point of division lies on the line $x-3 y=0$.
Thus,
$[(6 k-2) /(k+1)]-3[(3 k-5) /(k+1)]=0$
$6 \mathrm{k}-2-3(3 \mathrm{k}-5)=0$
$6 \mathrm{k}-2-9 \mathrm{k}+15=0$
$-3 \mathrm{k}+13=0$
$-3 \mathrm{k}=-13$
$\mathrm{k}=13 / 3$
Thus, the ratio in which the line $x-3 y=0$ divides the line segment $A B$ is $13: 3$.
Therefore, $x=[6(13 / 3)-2] /[(13 / 3)+1]$
$=(78-6) /(13+3)$
$=72 / 16$
$=9 / 2$
And
$y=[3(13 / 3)-5] /[(13 / 3)+1]$
$=(39-15) /(13+3)$
$=24 / 16$
$=3 / 2$
Therefore, the coordinates of the point of intersection $=(9 / 2,3 / 2)$.
Q.11: Write the coordinates of a point on the x-axis which is equidistant from points $A(-2,0)$ and $B(6,0)$.

Solution:

Let $\mathrm{P}(\mathrm{x}, \mathrm{o})$ be a point on the x -axis.
Given that point, P is equidistant from points $\mathrm{A}(-2,0)$ and $\mathrm{B}(6,0)$.
$\mathrm{AP}=\mathrm{BP}$
Squaring on both sides,
$(\mathrm{AP})^{2}=(\mathrm{BP})^{2}$
Using distance formula,
$(x+2)^{2}+(0-0)^{2}=(x-6)^{2}+(0-0)^{2}$
$x^{2}+4 x+4=x^{2}-12 x+36$
$4 x+12 x=36-4$
$16 x=32$
$\mathrm{x}=2$
Therefore, the coordinates of a point on the x -axis $=(2,0)$.
Q.12: If $A(-2,1), B(a, 0), C(4, b)$ and $D(1,2)$ are the vertices of a parallelogram ABCD , find the values of a and b . Hence, find the lengths of its sides.

Solution:

Given vertices of a parallelogram ABCD are:
$A(-2,1), B(a, 0), C(4, b)$ and $D(1,2)$
We know that the diagonals of a parallelogram bisect each other.
So, midpoint of $\mathrm{AC}=$ midpoint of BD
$[(-2+4) / 2,(1+b) / 2]=[(a+1) / 2,(0+2) / 2]$
By equating the corresponding coordinates,
$2 / 2=(a+1) / 2$ and $(1+b) / 2=2 / 2$
$\mathrm{a}+1=2$ and $\mathrm{b}+1=2$
$\mathrm{a}=1$ and $\mathrm{b}=1$
Therefore, $\mathrm{a}=1$ and $\mathrm{b}=1$.
Let us find the lengths of sides of a parallelogram, i.e. $\mathrm{AB}, \mathrm{BC}, \mathrm{CD}$ and DA

Using the distance formula,
$\mathrm{AB}=\sqrt{ }\left[(1+2)^{2}+(0-1)^{2}\right]=\sqrt{ }(9+1)=\sqrt{ } 10$ units
$B C=\sqrt{ }\left[(4-1)^{2}+(1-0)^{2}\right]=\sqrt{ }(9+1)=\sqrt{ } 10$ units
And $C D=\sqrt{ } 10$ and $D A=\sqrt{ } 10$ \{the opposite sides of a parallelogram are parallel and equal\}

Hence, the length of each side of the parallelogram $\mathrm{ABCD}=\sqrt{ } 10$ units.
Q.13: If $A(-5,7), B(-4,-5), C(-1,-6)$ and $D(4,5)$ are the vertices of a quadrilateral, find the area of the quadrilateral $A B C D$.

Solution:

Given vertices of a quadrilateral are:
$\mathrm{A}(-5,7), \mathrm{B}(-4,-5), \mathrm{C}(-1,-6)$ and $\mathrm{D}(4,5)$
The quadrilateral ABCD can be divided into two triangles ABD and BCD .
Area of the triangle with vertices $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$, and $\left(\mathrm{x}_{3}, \mathrm{y}_{3}\right)=(1 / 2) \mid \mathrm{x}_{1}\left(\mathrm{y}_{2}-\mathrm{y}_{3}\right)+\mathrm{x}_{2}\left(\mathrm{y}_{3}-\right.$ $\left.\mathrm{y}_{1}\right)+\mathrm{x}_{3}\left(\mathrm{y}_{1}-\mathrm{y}_{2}\right) \mid$

Area of triangle $\mathrm{ABD}=(1 / 2)|-5(-5-5)+(-4)(5-7)+4(7+5)|$
$=(1 / 2)|-5(-10)-4(-2)+4(12)|$
$=(1 / 2)|50+8+48|$
$=(1 / 2) \times 106$
$=53$
Area of triangle $\mathrm{BCD}=(1 / 2)|-4(-6-5)+(-1)(5+5)+4(-5+6)|$
$=(1 / 2)|-4(-11)-1(10)+4(1)|$
$=(1 / 2)|44-10+4|$
$=(1 / 2) \times 38$
$=19$
Therefore, the area of quadrilateral $\mathrm{ABCD}=$ Area of triangle $\mathrm{ABD}+$ Area of triangle BCD
$=53+19$
$=72$ sq.units
Q.14: Find the ratio in which $P(4, m)$ divides the line segment joining the points $A(2,3)$ and $B(6,-3)$. Hence, find m.

Solution:

Let $\mathrm{P}(4, \mathrm{~m})$ divides the line segment joining the points $\mathrm{A}(2,3)$ and $\mathrm{B}(6,-3)$ in the ratio k : 1.

Here,
$P(4, m)=(x, y)$
$\mathrm{A}(2,3)=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$B(6,-3)=\left(x_{2}, y_{2}\right)$
Using section formula,
$\mathrm{p}(\mathrm{x}, \mathrm{y})=\left[\left(\mathrm{kx}_{2}+\mathrm{x}_{1}\right) /(\mathrm{k}+1),\left(\mathrm{ky}_{2}+\mathrm{y}_{1}\right) /(\mathrm{k}+1)\right]$
$(4, m)=[(6 \mathrm{k}+2) /(\mathrm{k}+1),(-3 \mathrm{k}+3) /(\mathrm{k}+1)]$
By equating the x -coodinate,
$(6 \mathrm{k}+2) /(\mathrm{k}+1)=4$
$6 \mathrm{k}+2=4 \mathrm{k}+4$
$6 k-4 k=4-2$
$2 \mathrm{k}=2$
$\mathrm{k}=1$
Thus, the point P divides the line segment joining A and B in the ratio $1: 1$.
Now by equating the y-coodinate,
$(-3 k+3) /(k+1)=m$
Substituting $\mathrm{k}=1$,
$[-3(1)+3] /(1+1)=m$
$\mathrm{m}=(3-3) / 2$
$\mathrm{m}=\mathrm{o}$
Q.15: Find the distance of a point $P(x, y)$ from the origin.

Solution:

Given,
$P(x, y)$
Coordinates of origin $=\mathrm{O}(\mathrm{o}, \mathrm{o})$
Let $\mathrm{P}(\mathrm{x}, \mathrm{y})=\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$
$\mathrm{O}(\mathrm{o}, \mathrm{o})=\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
Using distance formula,
$\mathrm{OP}=\sqrt{ }\left[\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}\right]$
$=\sqrt{ }\left[(x-0)^{2}+(y-0)^{2}\right]$
$=\sqrt{ }\left(x^{2}+y^{2}\right)$
Hence, the distance of the point $P(x, y)$ from the origin is $\sqrt{ }\left(x^{2}+y^{2}\right)$ units.

