Important Questions Class 10 Maths Chapter 3 Linear Equations In Two Variables

Q.1: The cost of 2 kg of apples and 1 kg of grapes on a day was found to be Rs.160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs.300. Represent the situation algebraically.

Solution:

Let the cost of 1 kg of apples be 'Rs. x '.
And, let the cost of 1 kg of grapes be 'Rs. y '.
According to the question, the algebraic representation is
$2 \mathrm{x}+\mathrm{y}=160$
And $4 \mathrm{x}+2 \mathrm{y}=300$
For, $2 \mathrm{x}+\mathrm{y}=160$ or $\mathrm{y}=160-2 \mathrm{x}$, the solution table is;

x	50	60	70
y	60	40	20

For $4 \mathrm{x}+2 \mathrm{y}=300$ or $\mathrm{y}=(300-4 \mathrm{x}) / 2$, the solution table is;

x	70	80	75
y	10	-10	0

Note: Students can also represent these two equations graphically, by using the given points of x-coordinate and y-coordinate.
Q.2: Half the perimeter of a rectangular garden, whose length is $\mathbf{4} \mathbf{m}$ more than its width, is 36 m . Find the dimensions of the garden.

Solution:

Given, half the perimeter of a rectangular garden $=36 \mathrm{~m}$
so, $2(\mathrm{l}+\mathrm{b}) / 2=36$
$(\mathrm{l}+\mathrm{b})=36$
Given, the length is 4 m more than its width.
Let width $=\mathrm{x}$

And length $=x+4$
Substituting this in eq(1), we get;
$\mathrm{x}+\mathrm{x}+4=36$
$2 x+4=36$
$2 \mathrm{x}=32$
$\mathrm{x}=16$
Therefore, the width is 16 m and the length is $16+4=20 \mathrm{~m}$.
Q.3: On comparing the ratios $a_{1} / a_{2}, b_{1} / b_{2}$, and c_{1} / c_{2}, find out whether the following pair of linear equations are consistent, or inconsistent.
(i) $3 x+2 y=5 ; 2 x-3 y=7$
(ii) $2 x-3 y=8 ; 4 x-6 y=9$

Solution:

(i) Given: $3 x+2 y=5$ or $3 x+2 y-5=0$
and $2 x-3 y=7$ or $2 x-3 y-7=0$
Comparing the above equations with $\mathrm{a}_{1} \mathrm{x}+\mathrm{b}_{1} \mathrm{y}+\mathrm{c}_{1}=\mathrm{o}$
And $\mathrm{a}_{2} \mathrm{x}+\mathrm{b}_{2} \mathrm{y}+\mathrm{c}_{2}=\mathrm{o}$
We get,
$\mathrm{a}_{1}=3, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-5$
$\mathrm{a}_{2}=2, \mathrm{~b}_{2}=-3, \mathrm{c}_{2}=-7$
$a_{1 /} a_{2}=3 / 2, b_{1} / b_{2}=2 /-3, c_{1} / c_{2}=-5 /-7=5 / 7$
Since, $\mathrm{a}_{1} / \mathrm{a}_{2} \neq \mathrm{b}_{1} / \mathrm{b}_{2}$ the lines intersect each other at a point and have only one possible solution.

Hence, the equations are consistent.
(ii) Given $2 x-3 y=8$ and $4 x-6 y=9$

Therefore,
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=-3, \mathrm{c}_{1}=-8$
$\mathrm{a}_{2}=4, \mathrm{~b}_{2}=-6, \mathrm{c}_{2}=-9$
$\mathrm{a}_{1} / \mathrm{a}_{2}=2 / 4=1 / 2, \mathrm{~b}_{1} / \mathrm{b}_{2}=-3 /-6=1 / 2, \mathrm{c}_{1} / \mathrm{c}_{2}=-8 /-9=8 / 9$
Since, $\mathrm{a}_{1} / \mathrm{a}_{2}=\mathrm{b}_{1} / \mathrm{b}_{2} \neq \mathrm{c}_{1} / \mathrm{c}_{2}$
Therefore, the lines are parallel to each other and they have no possible solution. Hence, the equations are inconsistent.

Q.4: Solve the following pair of linear equations by the substitution method.

(i) $x+y=14$
$x-y=4$
(ii) $3 x-y=3$
$9 x-3 y=9$

Solution:

(i) Given,
$x+y=14$ and $x-y=4$ are the two equations.
From 1st equation, we get,
$\mathrm{x}=14-\mathrm{y}$
Now, put the value of x in second equation to get,
$(14-y)-y=4$
$14-2 y=4$
$2 \mathrm{y}=10$
Or $y=5$
By the value of y, we can now find the value of x;
$\because \mathrm{x}=14-\mathrm{y}$
$\therefore x=14-5$
Or $x=9$
Hence, $x=9$ and $y=5$.
(ii) Given,
$3 x-y=3$ and $9 x-3 y=9$ are the two equations.
From 1st equation, we get,
$x=(3+y) / 3$
Now, substitute the value of x in the given second equation to get,
$9[(3+y) / 3]-3 y=9$
$\Rightarrow 3(3+y)-3 y=9$
$\Rightarrow 9+3 y-3 y=9$
$\Rightarrow 9=9$
Therefore, y has infinite values and since, $\mathrm{x}=(3+\mathrm{y}) / 3$, so x also has infinite values.

Q.5: Solve $2 x+3 y=11$ and $2 x-4 y=-24$ and hence find the value of ' m ' for

 which $\mathbf{y}=\mathbf{m x}+3$.
Solution:

$2 \mathrm{x}+3 \mathrm{y}=11$.
$2 x-4 y=-24$
From equation (i), we get;
$x=(11-3 y) / 2$
Putting the value of x in equation (ii), we get
$2[(11-3 y) / 2]-4 y=-24$
$11-3 y-4 y=-24$
$-7 y=-35$
$\mathrm{y}=5$
Putting the value of y in equation (iii), we get;
$\mathrm{x}=(11-15) / 2=-4 / 2=-2$
Hence, $x=-2, y=5$
Also,
$y=m x+3$
$5=-2 m+3$
$-2 \mathrm{~m}=2$
$\mathrm{m}=-1$
Therefore, the value of m is -1 .
Q.6: The coach of a cricket team buys 7 bats and 6 balls for Rs.3800. Later, she buys 3 bats and 5 balls for Rs.1750. Find the cost of each bat and each ball.

Solution:

Let the cost of a bat be x and the cost of a ball be y.
According to the question,
$7 x+6 y=3800$
$3 x+5 y=1750$
From (i), we get;
$y=(3800-7 x) / 6$
Substituting (iii) in (ii). we get,
$3 \mathrm{x}+5[(3800-7 \mathrm{x}) / 6]=1750$
$\Rightarrow 3 \mathrm{x}+(9500 / 3)-(35 \mathrm{x} / 6)=1750$
$3 \mathrm{x}-(35 \mathrm{x} / 6)=1750-(9500 / 3)$
$(18 \mathrm{x}-35 \mathrm{x}) / 6=(5250-9500) / 3$
$\Rightarrow-17 \mathrm{x} / 6=-4250 / 3$
$\Rightarrow-17 \mathrm{x}=-8500$
$\mathrm{x}=500$
Putting the value of x in (iii), we get;
$y=(3800-7 \times 500) / 6=300 / 6=50$
Hence, the cost of a bat is Rs 500 and the cost of a ball is Rs 50 .
Q.7: A fraction becomes $9 / 11$ if 2 is added to both the numerator and the denominator. If, 3 is added to both the numerator and the denominator it becomes $5 / 6$. Find the fraction.

Solution:

Let the fraction be x / y.

According to the question,
$(x+2) /(y+2)=9 / 11$
$11 x+22=9 y+18$
$11 x-9 y=-4$
$(x+3) /(y+3)=5 / 6$
$6 x+18=5 y+15$
$6 x-5 y=-3$
From (1), we get
$x=(-4+9 y) / 11$
Substituting the value of x in (2), we get
$6[(-4+9 y) / 11]-5 y=-3$
$-24+54 y-55 y=-33$
$-\mathrm{y}=-9$
$y=9$
Substituting the value of y in (3), we get
$\mathrm{x}=(-4+81) / 11=77 / 11=7$
Hence, the fraction is $7 / 9$.
Q. 8 Form the pair of linear equations in the following problems, and find their solutions (if they exist) by the elimination method:
(i) Five years ago, Nuri was thrice as old as Sonu. Ten years later, Nuri will be twice as old as Sonu. How old are Nuri and Sonu?
Solution:
Let us assume, the present age of Nuri be x .
And the present age of Sonu is y.
According to the given condition, we can write as;
$x-5=3(y-5)$
$x-3 y=-10$.
Now,
$x+10=2(y+10)$
$x-2 y=10$.
Subtract eq. 1 from 2, to get,
$\mathrm{y}=20$
Substituting the value of y in eq.1, we get,
$x-3(20)=-10$
$x-60=-10$
$\mathrm{x}=50$

Therefore,
The age of Nuri is 50 years
The age of Sonu is 20 years.
(ii) A lending library has a fixed charge for the first three days and an additional charge for each day thereafter. Saritha paid Rs. 27 for a book kept for seven days, while Susy paid Rs. 21 for the book she kept for five days. Find the fixed charge and the charge for each extra day.

Solution:

Let the fixed charge for the first three days be Rs. A and the charge for each day extra be Rs. B.
According to the information given,
$\mathrm{A}+4 \mathrm{~B}=27$
$A+2 B=21$
When equation (ii) is subtracted from equation (i) we get,

$$
\begin{equation*}
2 B=6 \tag{iii}
\end{equation*}
$$

B $=3$
Substituting B $=3$ in equation (i) we get,
A $+12=27$
$\mathrm{A}=15$
Hence, the fixed charge is Rs. 15.
And the Additional charge per day is Rs. 3.
Q.9: Solve the following pair of linear equations by the substitution and cross-multiplication methods:
$8 x+5 y=9$
$3 x+2 y=4$

Solution:

$8 x+5 y=9$
$3 x+2 y=4$
From equation (2) we get;
$x=(4-2 y) / 3$
Substituting this value in equation 1 , we get
$8[(4-2 y) / 3]+5 y=9$
$32-16 y+15 y=27$
$-y=-5$
$y=5$
Substituting this value in equation (2), we get
$3 \mathrm{x}+10=4$
$3 x=-6$
$\mathrm{x}=-2$
Thus, $x=-2$ and $y=5$.

Now, Using Cross Multiplication method:
$8 \mathrm{x}+5 \mathrm{y}-9=0$
$3 x+2 y-4=0$
$x /(-20+18)=y /(-27+32)=1 /(16-15)$
$-x / 2=y / 5=1 / 1$
$\therefore \mathrm{x}=-2$ and $\mathrm{y}=5$.
Q.10: Formulate the following problems as a pair of equations, and hence find their solutions:
(i) Ritu can row downstream 20 km in 2 hours, and upstream 4 km in 2 hours. Find her speed of rowing in still water and the speed of the current.

Solution:

(i) Let us consider,

Speed of boat is still water $=x \mathrm{~km} / \mathrm{hr}$
Speed of current $=y \mathrm{~km} / \mathrm{hr}$
Now, speed of Ritu, during,
Downstream $=\mathrm{x}+\mathrm{y}$ km/hr
Upstream $=\mathrm{x}-\mathrm{y} \mathrm{km} / \mathrm{hr}$
As per the question given,
$2(x+y)=20$
Or $x+y=10$.
And, $2(\mathrm{x}-\mathrm{y})=4$
Or $\mathrm{x}-\mathrm{y}=2$.
Adding both the eq. 1 and 2 , we get,
$2 \mathrm{x}=12$
$\mathrm{x}=6$
Putting the value of x in eq.1, we get,
$\mathrm{y}=4$
Therefore,
Speed of Ritu is still water $=6 \mathrm{~km} / \mathrm{hr}$
Speed of current $=4 \mathrm{~km} / \mathrm{hr}$
Q.11: Solve the equations $x+2 y-4=0$ and $2 x+4 y-12=0$ graphically.

Solution:

Given,
$x+2 y-4=0 . . .(i)$
$2 x+4 y-12=0$
From (i),

$$
x+2 y=4
$$

$$
2 y=4-x
$$

$$
y=(4-x) / 2
$$

x	0	2	4
y	2	1	0

From (ii),

$$
2 x+4 y=12
$$

$$
x+2 y=6
$$

$$
2 y=6-x
$$

$$
y=(6-x) / 2
$$

$$
\begin{array}{l|l|l|l}
\mathrm{x} & 0 & 2 & 4 \\
\hline \mathrm{y} & 3 & 2 & 1
\end{array}
$$

Plotting the points on the graph, we get;

Here, the lines represent the given pair of linear equations are parallel.
Thus, there is no solution to the given pair of linear equations.
Q.12: Find the value(s) of k so that the pair of equations $x+2 y=5$ and $3 x+k y$ $+15=0$ has a unique solution.

Solution:

Given,
$x+2 y=5$
$3 x+k y+15=0$
Also, given that the pair of equations has a unique solution.
Comparing the given equations with standard form,
$\mathrm{a}_{1}=1, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=-5$
$\mathrm{a}_{2}=3, \mathrm{~b}_{2}=\mathrm{k}, \mathrm{c}_{2}=15$
Condition for unique solution is:
$\mathrm{a}_{1} / \mathrm{a}_{2} \neq \mathrm{b}_{1} / \mathrm{b}_{2}$
$1 / 3 \neq 2 / k$
$\mathrm{k} \neq(2)(3)$
$k \neq 6$
Thus, for all real values of k except 6 , the given pair of equations has a unique solution.
Q.13: Determine graphically the coordinates of vertices of a triangle, the equation of whose sides are given by $2 y-x=8,5 y-x=14$ and $y-2 x=1$.

Solution:

Given,
$2 y-x=8 \ldots$. (i)
$5 y-x=14 \ldots$. (ii)
$y-2 x=1$.
From (i),
$2 y=x+8$
$y=(x+8) / 2$

x	-4	0	2
y	2	4	5

From (ii),
$5 y=x+14$
$y=(x+14) / 5$

x	-4	1	6
y	2	3	4

From (iii),
$y=2 x+1$

```
x -1 1 1 2
```

```
y 
```

Let us plot all these points on the graph.

From the graph, we can write the coordinates of vertices of triangle formed are:
$\mathrm{P}(-4,2), \mathrm{Q}(1,3)$, and $\mathrm{R}(2,5)$
Q.14: Use elimination method to find all possible solutions of the following pair of linear equation:
$2 x+3 y=8$
$4 x+6 y=7$

Solution:

Given,
$2 x+3 y=8 \ldots .(i)$
$4 x+6 y=7$

Multiply Equation (1) by 2 and Equation (2) by 1 to make the coefficients of x equal.
$4 x+6 y=16$.
$4 x+6 y=7$.
Subtracting (iv) from (iii),
$4 x+6 y-4 x-6 y=16-7$
$0=9$, it is not possible
Therefore, the pair of equations has no solution.
Q.15: Solve the following pairs of equations by reducing them to a pair of linear equations:
$1 / 2 x+1 / 3 y=2$
$1 / 3 x+1 / 2 y=13 / 6$

Solution:

Given,
$1 / 2 x+1 / 3 y=2$
$1 / 3 x+1 / 2 y=13 / 6$
Let us assume $1 / \mathrm{x}=\mathrm{m}$ and $1 / \mathrm{y}=\mathrm{n}$, then the equations will change as follows.
$\mathrm{m} / 2+\mathrm{n} / 3=2$
$\Rightarrow 3 \mathrm{~m}+2 \mathrm{n}-12=0$
$\mathrm{m} / 3+\mathrm{n} / 2=13 / 6$
$\Rightarrow 2 \mathrm{~m}+3 \mathrm{n}-13=0$.
Now, using cross-multiplication method, we get,
$\mathrm{m} /(-26-(-36))=\mathrm{n} /(-24-(-39))=1 /(9-4)$
$\mathrm{m} / 10=\mathrm{n} / 15=1 / 5$
$\mathrm{m} / 10=1 / 5$ and $\mathrm{n} / 15=1 / 5$
So, $\mathrm{m}=2$ and $\mathrm{n}=3$
$1 / x=2$ and $1 / y=3$
$x=1 / 2$ and $y=1 / 3$

