KENDRIYA VIDYALAYA SANGATHAN, LUCKNOW REGION SESSION ENDING EXAMINATION (2023-24) CLASS-XI SUBJECT: CHEMISTRY MARKING SCHEME

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		16
В	C	A	C	Α	D	С	D	В	В	В	В	Α	D	A		A
1-			0.7.5	<u> </u>												
17	Molar mass of $MnO_2 = 55 + 32 = 87$ g.										1					
	Molar mass of 4 moles of HCl = 4 x 36.5 = 146g. So mass of HCl will react with 5.0g of MpO2 = $146/97 = 5 = 9.40 = 1$										1					
	$30, mass of field with feast with 5.0g of 10002 - 140707 \times 5 - 0.40g.1$										1					
18	$\int 4 = 580 \text{ nm} = 580 \text{ x} 10^{-9} \text{ m}.$									1						
10	Frequency, $v = c / \Lambda = 3.0 \times 10^8 \text{ m/s} / 580 \times 10^{-9} \text{ m} = 5.17 \times 10^{14} \text{ s}^{-1}$.															
	Wave number, $(\overline{v}) = 1 / \Lambda = 1 / 580 \times 10^{-9} \text{ m} = 1.72 \times 10^{6} \text{ m}^{-1}$										1					
19	Hybridisation is sp ³ d. Shape – Trigonal bipyramidal											1				
	Because, Axial bonds experience more repulsion than equatorial bonds.											1				
	Or															
	No. of bonds formed between two atoms is called bond order.										1					
	Bond order $= \frac{1}{2} (B.e - A.B.e)$															
	Bond order of $O_2^+ = 1/2(B.e - A.B.e) = 1/2 (8-3) = 2.5$										1					
20	For eigen reaction Ang = 2 (2) = 1									1						
20	ΛH^0 -	$= \Lambda I^{10}$	-action + Ang F	, ⊿ng · ₹T = -	– 2- (3 10 5K	i + (-1) (8 31	4 x 10	- ³ Ki) (298) -	-10 5	- 2.48	= -		1	
	$\Delta H^{2} - \Delta U^{2} \Delta Hg KI = -10.3 KJ + (-1) (0.514 \times 10^{6} KJ) (298) = -10.5 - 2.48 = -$ 12 98Ki															
	$\Delta G^{0} = \Delta H^{0} - T\Delta S^{0} = -12.98 \text{ Ki} - 298 (-44.1 \text{ x } 10^{-3} \text{ kJ}) = -12.98 \text{ kI} + 13.14 \text{ kI} = 0.16 \text{ kI}$											1				
	As ΔG^0 comes out to be +ve, the reaction will not occur spontaneously.															
21	Electr	rophile	es are e	electro	n defic	cient sp	pecies	and ca	n acce	pt an e	lectroi	n pair f	rom		1	
	electr	on ricl	h speci	ies. Ex	ample	:- H+, l	Br+,NO	D2+, BI	F ₃ ,etc.							
	A nuc	cliophi	les are	electr	on ricl	n speci	es and	l can de	onate a	in elec	tron pa	air to e	lectron	l	1	
22	defici	ent sp	ecies.	Eg:- O	H^{-}, OH	<u>, CN</u>	, NH3	s, etc.	1		4				1	
22	(8	i) NO ida	two el	ectron	s of an	atom	can ha	ave all	the fou	ir quan	itum n	umbers	8		1	
	(}	n = 1	3 1 = 1	m=0	s= -1/2	,									1	
	(0	c) $1s^2$	$2s^2 2p^2$	6 3s ² 3	$p^{6} 4s^{1}$	- 3d ⁵ .									1	
23	(8	a) Due	e to sm	nall siz	e of flu	lorine	than c	hlorine	e and n	nore in	ter ele	ctronic	:		1	
		rep	ulsion	in fluo	rine th	an chl	orine.									
	(ł	o) Due	e to ha	lf fille	d 2p oi	rbital c	of nitro	ogen.							1	
	(c) Ununoctium, Uuo											1				
24	Aim:	C(s) +	- 2H ₂ (§	(g) + 1/2	$2O_2(g)$			CH ₃ C	DH (l),	$\Delta_{\rm f} H^0$ =	=?				1	
	Eqn. (ii) $+ 2$ Eqn. (iii) $-$ Eqn. (i) gives the required eqn. with										1					
	$\Delta H = -393 + 2 (-286) - (-726) \text{ kJ mol}^{-1} = -239 \text{ kJ mol}^{-1}.$									1						
	UK Correct statements															
	We simplify $C(a) + 1/Q(a) = CO(a) + 1/Q(a)$															
	we all at: $U(s) + \frac{1}{2}U_2(g)$ r $U(g); \Delta_f H^\circ = ?$ Subtracting eqn. (ii) from eqn. (i) we get											1				
	C(a)	$\perp 1/2 C$	رم) در م	$CO(\epsilon$	$\frac{1}{2}$	(1), we		л.н ⁰ –	_303 4	5_()	83 (1) -	110	5 kI m	ol-		
	$C(s) + 1/2 O_2(g) - CO(g)$ $r = 0; \Delta_f H^\circ = -393.5 - (-283.0) = -110.5 \text{ kJ mol}^\circ$										2					
	$\int_{-\infty}^{\infty} C(s) + \frac{1}{2} O_{2}(s) \longrightarrow CO(s) \cdot \Lambda_{2} H^{0} - \frac{1105 \text{ km}}{1000 \text{ km}}$															
	Of $C(s) + 1/2 O_2(g)$ = CO (g); $\Delta_f H^\circ = -110.5 \text{ KJ}$. So heat of formation of CO is : $\Delta_r H^\circ = -110.5 \text{ kJ} \text{ mol}^{-1}$															
25	Indicating oxidation number and oxidation & reduction											1				
	Balancing charge and hydrogen atom											1				
	Balancing number of electron and writing final balanced equation as															
		-					-								1	

	$2MnO_{4}^{-}(aq) + 6I^{-}(aq) + 4H^{2}O(1) \longrightarrow 2MnO^{2}(s) + 3I_{2}(s) + 8OH^{-}(aq)$							
26	 (a) The polarization of a sigma bond due to electron withdrawing or electron donating effect of adjacent groups pr atoms in a carbon chain is called inductive effect. 							
	(b) Due to hyperconjugation effect.(c)							
	Нзс снз Нзс н							
	н н н ссс снз							
	Cis-2-butene Trans-2-butene							
27	 (a) (i) 4-methyl pentanal (ii) 2,3-dimethyl butan-1-ol (b) Percentage of carbon =12/44 x 0.198/0.246 x100 = 21.95 % Percentage of hydrogen = 2/18 x 0.1014/0.246 x 100 = 4.48% 	¹ / ₂ +1/2 1 1						
28	$H_{3}^{1}C - CH = C - CH_{2} - CH_{3}$							
	CH ₂ - CH ₃							
	(a) $3 - Ethyl pent -2-ene$	1						
	(b) (i)CH3 CH2 CH2 CH3 (ii) CH2=CH2	1						
29	1. Energy can neither be created nor destroyed. Any other statement. $\Delta U = q$	1						
	+ W							
	2. Correct definition with example 3. a state function is a property whose value is independent of the path taken to	1						
	reach that value.							
30	Examples of state functions include: Internal energy, Enthalpy, Entropy. 1—B, 2D, 3C, 4C							
31	a. Correct statement							
	b. (1) forward direction (11) Backward direction (11) Backward direction (1V) forward direction							
	c. Lewis acids – BF3, NH_4^+ . Lewis bases - OH^-F -							
	a)Common ion effect is a phenomenon in which degree of dissociation of any weak							
	electrolyte is supressed by addition of small amount of strong electrolyte b) Water has 10^{-7} M H ⁺ and 10^{-7} M OH ⁻							
	When 10^{-8} M HCl is added the concentration of proton in water is not neglected.							
	So, Total $[H^+] = 10^{-7} + 10^{-8} = 10^{-8}[1 + 10] = 11 \times 10^{-8} M$ $pH = -\log(H^+) = -\log(11 \times 10^{-8}) = 8 - \log(11 - 6.598)$							
	(C) (i) HF <hcl<hbr<hi< td=""></hcl<hbr<hi<>							
	(ii) CH4 <nh3<h2o<hf< td=""><td></td></nh3<h2o<hf<>							
		1 1						
32	(a) If a planar ring molecule would have aromatic properties. His rule states that	2						
	If a cyclic, planar molecule has $4n+2\pi$ electrons, it is considered aromatic. Condition:- (i) Organic compound should have a single cyclic cloud of delocalized π							
	electrons above and below the plane of the molecule.							
	(ii) It should contain $(4n+2\pi)$ electron where $n = 1,2,3$ etc.							
	(b) (i)							
		3×1						
	H ₃ C Cl AlCl ₃ CH ₃							

