Solutions For All Chapters Maths Class 8
Ex 12.2 Class 8 Maths Question 1.
Factorise the following expressions.
(i) a² + 8a +16
(ii) p² – 10p + 25
(iii) 25m² + 30m + 9
(iv) 49y² + 84yz + 36z²
(v) 4x² – 8x + 4
(vi) 121b² – 88bc + 16c²
(vii) (l + m)² – 4lm. (Hint: Expand (l + m)² first)
(viii) a4 + 2a²b² + b4
Solution:
(i) a² + 8a + 16
Here, 4 + 4 = 8 and 4 × 4 = 16
a² + 8a +16
= a² + 4a + 4a + 4 × 4
= (a² + 4a) + (4a + 16)
= a(a + 4) + 4(a + 4)
= (a + 4) (a + 4)
= (a + 4)²
(ii) p² – 10p + 25
Here, 5 + 5 = 10 and 5 × 5 = 25
p² – 10p + 25
= p² – 5p – 5p + 5 × 5
= (p² – 5p) + (-5p + 25)
= p(p – 5) – 5(p – 5)
= (p – 5) (p – 5)
= (p – 5)²
(iii) 25m² + 30m + 9
Here, 15 + 15 = 30 and 15 × 15 = 25 × 9 = 225
25m² + 30m + 9
= 25m² + 15m + 15m + 9
= (25m² + 15m) + (15m + 9)
= 5m(5m + 3) + 3(5m + 3)
= (5m + 3) (5m + 3)
= (5m + 3)²
(iv) 49y² + 84yz + 36z²
Here, 42 + 42 = 84 and 42 × 42 = 49 × 36 = 1764
49y² + 84yz + 36z²
= 49y² + 42yz + 42yz + 36z²
= 7y(7y + 6z) +6z(7y + 6z)
= (7y + 6z) (7y + 6z)
= (7y + 6z)²
(v) 4x² – 8x + 4
= 4(x² – 2x + 1) [Taking 4 common]
= 4(x2 – x – x + 1)
= 4[x(x – 1) -1(x – 1)]
= 4(x – 1)(x – 1)
= 4(x – 1)²
(vi) 121b² – 88bc + 16c²
Here, 44 + 44 = 88 and 44 × 44 = 121 × 16 = 1936
121b² – 88bc + 16c²
= 121b² – 44bc – 44bc + 16c²
= 11b(11b – 4c) – 4c(11b – 4c)
= (11b – 4c) (11b – 4c)
= (11b – 4c)²
(vii) (l + m)² – 4lm
Expanding (l + m)², we get
l² + 2lm + m² – 4lm
= l² – 2lm + m²
= l² – Im – lm + m²
= l(l – m) – m(l – m)
= (l – m) (l – m)
= (l – m)²
(viii) a4 + 2a²b² + b4
= a4 + a²b² + a²b² + b4
= a²(a² + b²) + b²(a² + b²)
= (a² + b²)(a² + b²)
= (a² + b²)²
Ex 12.2 Class 8 Maths Question 2.
Factorise.
(i) 4p² – 9q²
(ii) 63a² – 112b²
(iii) 49×2 – 36
(iv) 16x5 – 144x³
(v) (l + m)² – (l – m)²
(vi) 9x²y² – 16
(vii) (x² – 2xy + y²) – z²
(viii) 25a² – 4b² + 28bc – 49c²
Solution:
(i) 4p² – 9q²
= (2p)² – (3q)²
= (2p – 3q) (2p + 3q)
[∵ a2 – b2 = (a + b)(a – b)]
(ii) 63a² – 112b²
= 7(9a² – 16b²)
= 7 [(3a)² – (4b)²]
= 7(3a – 4b)(3a + 4b)
[∵ a² – b² = (a + b)(a – b)]
(iii) 49x² – 36 = (7x)² – (6)²
= (7x – 6) (7x + 6)
[∵ a² – b² = (a + b)(a – b)]
(iv) 16x5 – 144x³ = 16x³ (x2 – 9)
= 16x³ [(x)² – (3)²]
= 16x³(x – 3)(x + 3)
[∵ a2 – b² = (a + b)(a – b)]
(v) (l + m)² – (l – m)²
= (l + m) – (l – m)] [(l + m) + (l – m)]
[∵ a² – b² = (a + b)(a – b)]
= (l + m – l + m)(l + m + l – m)
= (2m) (2l)
= 4ml
(vi) 9x²y² – 16 = (3xy)v – (4)²
= (3xy – 4)(3xy + 4)
[∵ a² – b² = (a + b)(a – b)]
(vii) (x² – 2xy + y²) – z²
= (x – y)² – z²
= (x – y – z) (x – y + z)
[∵ a² – b² = (a + b)(a – b)]
(viii) 25a² – 4b² + 28bc – 49c²
= 25a² – (4b² – 28bc + 49c²)
= (5a)2 – (2b – 7c)2
= [5a – (2b – 7c)] [5a + (2b – 7c)]
= (5a – 2b + 7c)(5a + 2b – 7c)
Ex 12.2 Class 8 Maths Question 3.
Factorise the expressions.
(i) ax² + bx
(ii) 7p² + 21q²
(iii) 2x³ + 2xy² + 2xz²
(iv) am² + bm² + bn² + an²
(v) (lm + l) + m + 1
(vi) y(y + z) + 9(y + z)
(vii) 5y² – 20y – 8z + 2yz
(viii) 10ab + 4a + 5b + 2
(ix) 6xy – 4y + 6 – 9x
Solution:
(i) ax² + bx = x(ax + 5)
(ii) 7p² + 21q² = 7(p² + 3q²)
(iii) 2x³ + 2xy² + 2xz² = 2x(x² + y² + z²)
(iv) am² + bm² + bn² + an²
= m² (a + b) + n²(a + b)
= (a + b)(m² + n²)
(v) (lm + l) + m + 1
= l(m + 1) + (m + 1)
= (m + 1) (l + 1)
(vi) y(y + z) + 9(y + z) = (y + z)(y + 9)
(vii) 5y² – 20y – 8z + 2yz
= 5y² – 20y + 2yz – 8z
= 5y(y – 4) + 2z(y – 4)
= (y – 4) (5y + 2z)
(viii) 10ab + 4a + 5b + 2
= 2a(5b + 2) + 1(5b + 2)
= (5b + 2)(2a + 1)
(ix) 6xy – 4y + 6 – 9x
= 6xy – 4y – 9x + 6
= 2y(3x – 2) – 3(3x – 2)
= (3x – 2) (2y – 3)
Ex 12.2 Class 8 Maths Question 4.
Factorise.
(i) a4 – b4
(ii) p4 – 81
(iii) x4 – (y + z)4
(iv) x4 – (x – z)4
(v) a4 – 2a²b² + b4
Solution:
(i) a4 – b4 – (a²)² – (b²)²
[∵ a² – b² = (a – b)(a + b)]
= (a² – b²) (a² + b²)
= (a – b) (a + b) (a² + b²)
(ii) p4 – 81 = (p²)² – (9)²
= (p² – 9) (p² + 9)
[∵ a² – b² = (a – b)(a + b)]
= (p – 3)(p + 3) (p² + 9)
(iii) x4 – (y + z)4 = (x2)2 – [(y + z)2]2
[∵ a2 – b2 = (a – b)(a + b)]
= [x2 – (y + z)2] [x2 + (y + z)2]
= [x – (y + z)] [x + (y + z)] [x2 + (y + z)2]
= (x – y – z) (x + y + z) [x2 + (y + z)2]
(iv) x4 – (x – z)4 = (x2)2 – [(y – z)2]2
= [x2 – (y – z)2] [x2 + (y – z)2]
= (x – y + z) (x + y – z) (x2 + (y – z)2]
(v) a4 – 2a2b2 + b4
= a4 – a2b2 – a2b2 + b4
= a2(a2 – b2) – b2(a2 – b2)
= (a2 – b2)(a2 – b2)
= (a2 – b2)2
= [(a – b) (a + b)]2
= (a – b)2 (a + b)2
Ex 12.2 Class 8 Maths Question 5.
Factorise the following expressions.
(i) p² + 6p + 8
(ii) q² – 10q + 21
(iii) p2 + 6p – 16
Solution:
(i) p² + 6p + 8
Here, 2 + 4 = 6 and 2 × 4 = 8
p² + 6p + 8
= p² + 2p + 4p + 8
= p (p + 2) + 4(p + 2)
= (p + 2) (p + 4)
(ii) q² – 10q + 21
Here, 3 + 7 = 10 and 3 × 7 = 21
q² – 10q + 21
= q² – 3q – 7q + 21
= q(q – 3) – 7(q – 3)
= (q – 3) (q – 7)
(iii) p² + 6p – 16
Here, 8 – 2 = 6 and 8 × 2 = 16
p² + 6p – 16
= p2 + 8p – 2p – 16
= p(p + 8) – 2(p + 8)
= (p + 8) (p – 2)
Thank you so much it helped me to do more problems in factorisation and understand it clearly
Thank you so much it helped me in completing my notes
thank you so much mam 😊😍
Thanks for this, helped me quite alot!
Thank you so much for providing these solutions. Your efforts are truly appreciated! ✨😌☺️🤗🌼🌼
This helped me soo much
Very good and help full answer 👍 👍👍👍👍🤍😊😊😊
Thankyou this helped me very much thank you once again ❤️🥰😊
I want with process
Not with direct answers
good liked it so much 5 star
Bhai thode chote solutions diya karo
Thankyou this helped me very much once again thankyou from heart of my bottom