प्रश्न 1.सिद्ध कीजिए कि पूर्णांकों के समुच्चय z में R = { (a, b ) : संख्या 2, (a – b) को विभाजित करती है } द्वारा प्रदत्त संबंध एक तुल्यता संबंध है।
समाधान:
समस्त a ∈ Z के लिए 2,(a – a) को विभाजित करेगा अर्थात् (a, a) ∈ R अत: R स्वतुल्य है।
माना (a,b) ∈ R ⇒ 2, (a – b) को विभाजित करता है
⇒ 2,- (b – a) को विभाजित करता है
(a,b) ∈ R ⇒ (b,a) ∈ R
अत: R, सममित है।
माना (a,b) ∈ R = 2,(a – b) को विभाजित करता है।
(b, c) ∈ R → 2,(b – c) को विभाजित करता है।
a – b तथा b – C, 2 से भाज्य है
a – b + b – c, भी 2 से भाज्य है
अर्थात् a – c भी 2 से भाज्य है
इसलिए (a,b) ∈ R, (b,c) ∈ R ⇒ (a,c) ∈ R
अत: R संक्रमक है। अतः R, स्वतुल्य, सममित तथा संक्रमक है अतः यह एक तुल्यता संबंध है। यही सिद्ध करना था।
प्रश्न 2. मान लीजिए कि समुच्चय A = {1, 2, 3, 4, 5, 6, 7} में R = {(a, b): a तथा b दोनों ही या तो विषम है या सम है } द्वारा परिभाषित एक संबंध है। सिद्ध कीजिए कि R एक तुल्यता संबंध है। साथ ही सिद्ध कीजिए कि उपसमुच्चय {1, 3, 5, 7} के सभी अवयव एक-दूसरे से संबंधित हैं और उपसमुच्चय {2, 4, 6} के सभी अवयव एक-दूसरे से संबंधित हैं। परंतु उपसमुच्चय {1, 3, 5, 7} का कोई भी अवयव उपसमुच्चय {2, 4, 6} के किसी भी अवयव से संबंधित नहीं है।
समाधान:
A का दिया गया कोई अवयव a या तो विषम है या सम है अतः (a, a) ∈ R अत: R स्वतुल्य है।
माना (a,b) ∈ R ⇒ a तथा b दोनों ही या तो विषम है या सम है।
⇒ b तथा a दोनों ही या तो विषम है या सम है।
(a,b) ∈ D (b, a) ∈ R
अत: R सममित है।
(a,b) ∈ R तथा (b, c) ∈ R ⇒ अवयव a, b, c सभी या तो विषम हैं या सम हैं।
(a,b) ∈ R तथा (b, c) ∈ R = (a,c) ∈ R
अत: R संक्रमक है।
यहाँ R, स्वतुल्य, सममित तथा संक्रमक है इसलिए R एक तुल्यता संबंध है। यही सिद्ध करना था।
पुनः {1, 3, 5, 7} के सभी अवयव एक – दूसरे से संबंधित हैं क्योंकि इस उपसमुच्चय के सभी अवयव विषम हैं।
इसी प्रकार {2, 4, 6} के सभी अवयव एक – दूसरे से संबंधित हैं क्योंकि ये सभी सम हैं साथ ही उपसमुच्चय {1, 3, 5, 7} का कोई भी अवयव {2, 4, 6} के किसी भी अवयव से संबंधित नहीं हो सकता क्योंकि {1, 3, 5, 7} के अवयव विषम हैं जबकि {2, 4, 6} के अवयव सम हैं।
प्रश्न 3. माना कि N प्राकृत संख्याओं का समुच्चय है। यदि समुच्चय N × N में परिभाषित एक संबंध R ऐसा हो कि (a, b) R (c, d) यदि ad (b + c) = bc (a + d) तो सिद्ध कीजिए कि R एक तुल्यता संबंध है।
समाधान:
स्वतुल्यता: प्रत्येक (a, b) ∈ N × N के लिए
ab (b + a) = ba (a + b)
⇒ (a, b) R (a, b)
अत: R स्वतुल्य होगा।
सममितता: माना (a, b)(c, d) ∈ N × N
(a, b) R (c, d) ⇒ ab(b + c) = bc(a + d)
⇒ bc (a + d) = ab (b + c)
(a,b) R (c,d) ⇒ (c, d) R (a, b)
अत: R सममित होगा।
उत्तर संक्रमकता: माना (a, b) R (c, d ) तथा (c, d) R (e, f)
⇒ ad ( b + c) = bc (a + d)
तथा cf (d + e) = de (c + f)
⇒ af (b + e) = bc (a + f)
(a, b) R (c, d) तथा (c, d) R (e, f) ⇒ (a, b) R (e, f)
अत: R संक्रमक है।
R, स्वतुल्य, सममित तथा संक्रमक है अत: R एक तुल्यता संबंध है।
प्रश्न 4.माना A = {1, 2, 3, 4, 5} तथा R = {(a,b): |a – b| 2 से विभाजित है} तो सिद्ध कीजिए कि R एक तुल्यता संबंध है तथा तुल्यता वर्ग भी बनाइए।
समाधान:
A = { 1, 2, 3, 4, 5 }
R = { (a, b) : |a – b| 2 से विभाजित है }
R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 3), (1, 5), (2, 4), (3, 5), (3, 1) (5, 1), (4, 2),(5, 3)}
∀ a ∈ A (a,a) ∈ R
इसलिए R स्वतुल्य होगा।
क्योंकि (1, 1), (2, 2), (3, 3), (4, 4), (5, 5) ∈ R
(a,b) ∈ R ⇒ (b,a) ∈ R
(1, 3), (1, 5), (2, 4), (3, 5), (3, 1), (5, 1), (4, 2), (5, 3) ∈ R
इसलिए R सममित है।
∀ (a, b) ∈ R,(b, c) ∈ R ⇒ (a, c) ∈ R
क्योंकि (1, 3)(3, 1) ∈ R = (1, 1) ∈ R
R संक्रमक है।
R, स्वतुल्य, सममित तथा संक्रमक है इसलिए R एक तुल्यता संबंध है।
यही सिद्ध करना था।
तुल्यता वर्ग
[1] = { a : a तथा 2 |a – 1| से विभाजित है}
[1] = {a : a ∈ A तथा a – 1 = 2 k}
[1] = {1, 3, 5}
[2] = { a : a तथा 2, |a – 2| से विभाजित है}
[2] = {a : a तथा a – 2 = 2k}
[2] = {2, 4}.
प्रश्न 5. तीन फलन f : N → N, g : N → N तथा h : N → R पर विचार कीजिए f (x) = 2x, g (y) = 3y + 4, तथा h (z) = sin z ∀ x, y तथा z ∈ N सिद्ध कीजिये की ho(gof)n = (hog)of?
समाधान:
ho(gof) x = h[gof(x)]
= h {g[f(x)}
= h (g (2x))
= h [3(2x) + 4]
= h [6x + 4]
= sin (6x + 4) ………………………… (1)
इसी प्रकार ((hog)of) x = (hog) f(x)
= (hog) 2x
= h (g (2x))
= h [3 (2x) + 4]
= h [6x + 4]
= sin (6x + 4)
समी, (1) और (2) से स्पस्ट है की
ho(gof) = (hog)of. यही सिद्ध करना था।
Leave a Reply