Solutions For All Chapters Ganit Class 7
Ex 9.3 – बीजीय व्यंजक
प्रश्न 1.
नीचे दिए गए बीजीय व्यंजकों का गुणा कीजिए-
(a) (7a + 2b) (a + 4b)
(b) (x – 6) (4x + 9)
(c) (5x – 1) (3y – 8)
(d) (a3 – b3) (a – b)
(e) (0.7x – 0.2y) (1.5x – 3y)
(f) (3a2 + 5a – 9) (3a – 9)
(g) (-x – y) (-x – y)
(h) (x2 – 5x + 8) (x2 + 3)
(j) (3pq – 3q) (3q – 7pq)
हल :
(a) (7a + 2b) (a + 4b)
= (7a × a) + (7a × 4b) + (2b × a) + (2b × 4b)
= 7a2 + 28ab + 2ab + 8b2
= 7a2 + 30ab + 8b2
(b) (x – 6) (4x + 9)
= (x × 4x) + (x × 9) + (-6 × 4x) + (-6 × 9)
= 4x2 + 9x – 24x – 54
= 4x2 – 15x – 54
(c) (5x – 1) (3y – 8)
= (5x × 3y) + (5x × -8) + (-1 × 3y) + (-1 × -8)
= 15xy – 40x – 3y + 8
(d) (a3 – b3) (a – b)
= (a3 × a) – (a3 × b) + (-b3 × a) + (-b3 × -b)
= a4 – a3b – b3a + b4
(e) (0.7x – 0.2y) (1.5x – 3y)
= (0.7x × 1.5x) + (0.7x × -3y) + (-0.2y × 1.5x) + (0.2y × -3y)
= 0.45x2 – 2.1xy – 3xy + 0.6y2
(f) (3a2 + 5a – 9) (3a – 9)
= (3a2 × 3a) + (3a2 × -9) + (5a × 3a) + (5a × -9) + (-9 × 3a) + (-9 × -9)
= 9a3 – 27a2 + 15a2 – 45a – 27a + 81
= 9a3 – 12a2 – 72a + 81
(g) (-x – y) (-x – y)
= (-x × -x) + (-x × -y) + (-y × -x) + (-y × -y)
= x2 + xy + xy + y2
= x2 + 2xy + y2
(h) (x2 – 5x + 8) (x2 + 3)
= (x2 × x2) + (x2 × 3) + (-5x × x2) + (-5x × 3) + (8 × x2) + (8 × 3)
= x4 + 3x2 – 5x3 – 15x + 8x2 + 24
= x4 + 11x2 – 5x3 – 15x + 24
(j) (3pq – 3q) (3q – 7pq)
= (3pq × 3q) + (3pq × -7pq) + (-3q × 3q) + (-3q × -7pq)
= 9pq2 – 21p2q2 – 9q2 + 21pq2
= 30pq2 – 21p2q2 – 9q2
= 3(10pq2 – 7p2q2 – 3q2)
प्रश्न 2.
सरल करें-
(a) (a + b) (a – b) + (a – b) (a2 + ab + b2)
(b) a3 – b3 + (a + b) (a2 – ab + b2)
(c) m2 – n2 – (m – n) (m + n)
(d) (2a + 5b) (3b + 4a) – (7a + 3b) (2a + b)
हल :
(a) (a + b) (a – b) + (a – b) (a2 + ab + b2)
= (a × a) + (a × -b) + (b × a) + (b × -b)} + {(a × a2)+ (a × ab) + (a × b2) + (-b × a2) + (-b × ab) + (-b × b2)
= {a2 – ab + ab – b2} + {a3 + a2b + ab2 – ba2 – ab2 – b3}
= (a2 – b2) + (a3 – b3)
(b) a3 – b3 + (a + b) (a2 – ab + b2)
= a3 – b3 + (a × a2 + a × -ab + a × b2 + b × a2 + b × -ab + b × b2)
= a3 – b3 + a3 – a2b + ab2 + ba2 – ab2 + b3
= a3 – b3 + a3 + b3
= 2a3
(c) m2 – n2 – (m – n) (m + n)
= m2 – n2 – {m × m + m × n – n × m – n × n)
= m2 – n2 – {m2 + mn – mn – n2}
= m2 – n2 – m2 + n2
= 0
(d) (2a + 5b) (3b + 4a) – (7a + 3b) (2a + b)
= {2a × 3b + 2a × 4a + 5b × 3b + 5b × 4a} – {7a × 2a + 7a × b + 3b × 2a + 3b × b}
= {6ab + 8a2 + 15b2 + 20ab} – {14a2 + 7ab + 6ab + 3b2}
= 6ab + 8a2 + 15b2 + 20ab – 14a2 – 7ab – 6ab – 3b2
= 8a2 – 14a2 + 15b2 – 3b2 + 20ab – 7ab
= -6a2 + 12b2 + 13ab
Bahut badhiya hai