Ex 3.5 – संख्याओं का खेल
प्रश्न 1. निम्नलिखित का ल० स० अभाज्य गुणनखण्डन विधि से करें।
(a) 16, 36
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
16 = 2 × 2 × 2 × 2 → 2 चार बार
36 = 2 × 2 × 3 × 3 → 2 दो बार, 3 दो बार
ल० स० = 2 × 2 × 2 × 2 × 3 × 3 = 144
(b) 14, 28
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखाटन करते हैं। जो इस प्रकार है-
14 = 2 × 7 → 2 एक बार, 7 एक बार
28 = 2 × 2 × 7 → 2 दो बार, 7 एक बार
ल० स० = 2 × 2 × 7 = 28
(c) 32, 36
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गणनखण्डन करते हैं। जो इस प्रकार है-
32 = 2 × 2 × 2 × 2 × 2 → 2 पाँच वार
36 = 2 × 2 × 3 × 3 → 2 दो बार, 3 दो बार
ल० स० = 2 × 2 × 2 × 2 × 2 × 3 × 3 = 288
(d) 50, 60
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
50 = 2 × 5 × 5 → 2 एक बार, 5 दो बार
60 = 2 × 2 × 3 × 5 → 2 दो बार, 3 एक बार, 5 एक बार
ल० स० = 2 × 2 × 3 × 5 × 5 = 300
(e) 160, 120
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
160 = 2 × 2 × 2 × 2 × 2 × 5 → 2 पाँच बार, 5 एक बार
120 = 2 × 2 × 2 × 3 × 5 → 2 तीन बार, 3 एक बार, 5 एक बार
ल० स० = 2 × 2 × 2 × 2 × 2 × 3 × 5 = 480
(f) 32, 42
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
32 = 2 × 2 × 2 × 2 × 2 → 2 पाँच बार
42 = 2 × 3 × 7 → 2 तीन बार, 3 एक बार, 7 एक बार
ल० स० = 2 × 2 × 2 × 2 × 2 × 3 × 7 = 672
(g) 15, 18, 21
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
15 = 3 × 5 → 3 एक बार, 5 एक बार
18 = 2 × 3 × 3 → 2 एक बार, 3 दो बार
21 = 3 × 7 → 3 एक बार, 7 दो बार
ल० स० = 2 × 3 × 3 × 5 × 7 = 630
(h) 24, 32, 36
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
24 = 2 × 2 × 2 × 3 → 2 तीन बार, 3 एक बार
32 = 2 × 2 × 2 × 2 × 2 → 2 पाँच बार
36 = 2 × 2 × 3 × 3 → 2 दो वार, 3 दो बार
ल० स० = 2 × 2 × 2 × 2 × 2 × 3 × 3 = 288
(i) 9, 12, 18
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
9 = 3 × 3 → 3 दो बार
12 = 2 × 2 × 3 → 2 दो बार, 3 एक बार
18 = 2 × 3 × 3 → 2 एक बार, 3 दो बार
ला स० = 2 × 2 × 3 × 3 = 36
(j) 9, 12, 18, 21
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
9 = 3 × 3 → 3 दो बार
12 = 2 × 2 × 3 → 2 दो बार, 3 एक बार
18 = 2 × 3 × 3 → 2 एक बार, 3 दो बार
21 = 3 × 7 → 3 एक बार, 7 एक बार
ल० स० = 2 × 2 × 3 × 3 × 7 = 252
(k) 12, 16, 24, 30
हल : सर्वप्रथम हम प्रत्येक संख्या का अभाज्य गुणनखण्डन करते हैं। जो इस प्रकार है-
12 = 2 × 2 × 3 → 2 दो बार, 3 एक बार
16 = 2 × 2 × 2 × 2 → 2 चार बार
24 = 2 × 2 × 2 × 30 → 2 तीन बार, 3 एक बार
36 = 2 × 3 × 5 → 2 एक बार, 3 एक बार, 5 एक बार
ल० स० = 2 × 2 × 2 × 2 × 3 × 5 = 240
Ganit padhna hai chhatta class
This is very good