Speed, Time and Distance (गति, समय और दूरी) In Hindi
गति, समय और दूरी गतिशील वस्तुओं से संबंधित महत्वपूर्ण अवधारणाएं हैं। इनका उपयोग किसी वस्तु की गति और तय की गई दूरी को मापने के लिए किया जाता है।
गति (Speed): किसी वस्तु द्वारा एक निश्चित समय अंतराल में तय की गई दूरी की दर को गति कहते हैं। इसे मीटर प्रति सेकंड (मीटर/सेकंड), किलोमीटर प्रति घंटा (किमी/घंटा) जैसी इकाइयों में मापा जाता है।
समय (Time): किसी कार्य को पूरा करने में लगने वाले अंतराल को समय कहते हैं। इसे सेकंड (से.), मिनट (मिनट), घंटा (घंटा) जैसी इकाइयों में मापा जाता है।
दूरी (Distance): दो बिंदुओं के बीच की लंबाई को दूरी कहते हैं। इसे मीटर (मीटर), किलोमीटर (किमी) जैसी इकाइयों में मापा जाता है।
Speed, Time and Distance In English
Speed, Time, and Distance are fundamental concepts related to moving objects. They are used to measure the motion of an object and the distance it covers.
1. Speed:
The rate at which an object covers distance in a specific time interval.
Measured in units like meters per second (m/s), kilometers per hour (km/h), etc.
- Formula : Speed = Distance/Time
2. Time:
The duration taken to complete an action.
Measured in units like seconds (s), minutes (min), hours (h), etc.
- Formula : Time = Distance / Speed
3. Distance:
The length between two points.
Measured in units like meters (m), kilometers (km), etc.
- Formula : Distance = Speed x Time
Units of Speed, Time, and Distance
The most commonly used units of speed, time, and distance are:
1. Speed: kilometers per hour (km/h), meters per second (m/s), miles per hour (mph), feet per second (ft/s).
2. Time: seconds (s), minutes (min), hours (h), days (d).
3. Distance: kilometers (km), meters (m), miles (mi), feet (ft).
Applications of Speed, Time, and Distance
- Average Speed = Total Distance Traveled/Total Time Taken
Case 1: when the same distance is covered at two separate speeds, x and y, then Average Speed is determined as 2xy/x+y.
Case 2: when two speeds are used over the same period of time, then Average Speed is calculated as (x + y)/2.
Relative speed: The rate at which two moving bodies are separating from or coming closer to each other.
Case 1: If two objects are moving in opposite directions, then their relative speed would be S1 + S2
Case 2: If they were moving in the same direction, their relative speed would be S1 – S2
Inverse Proportionality of Speed & Time: When Distance is kept constant, Speed and Time are inversely proportional to each other.
This relation can be mathematically expressed as S = D/T where S (Speed), D (Distance) and T (Time).
To solve problems based on this relationship, two methods are used:
1. Inverse Proportionality Rule
2. Constant Product Rule.
Leave a Reply