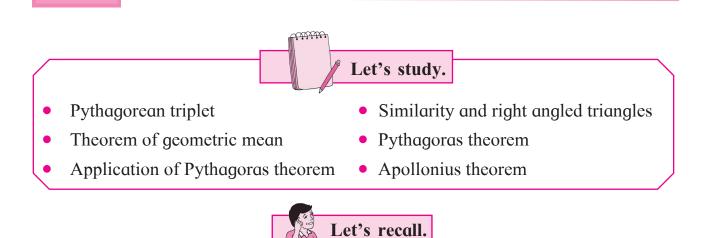
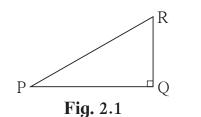
Pythagoras Theorem



Pythagoras theorem :

2

In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of remaning two sides.



In
$$\triangle$$
 PQR \angle PQR = 90°
 $l(PR)^2 = l(PQ)^2 + l(QR)^2$
We will write this as,
PR² = PO² + OR²

The lengths PQ, QR and PR of Δ PQR can also be shown by letters r, p and q. With this convention, referring to figure 2.1, Pythagoras theorem can also be stated as $q^2 = p^2 + r^2$.

Pythagorean Triplet :

In a triplet of natural numbers, if the square of the largest number is equal to the sum of the squares of the remaining two numbers then the triplet is called Pythagorean triplet.

For Example: In the triplet (11, 60, 61),

 $11^2 = 121$, $60^2 = 3600$, $61^2 = 3721$ and 121 + 3600 = 3721

The square of the largest number is equal to the sum of the squares of the other two numbers.

: 11, 60, 61 is a Pythagorean triplet.

Verify that (3, 4, 5), (5, 12, 13), (8, 15, 17), (24, 25, 7) are Pythagorean triplets.

Numbers in Pythagorean triplet can be written in any order.

For more information

Formula for Pythagorean triplet:

If *a*, *b*, *c* are natural numbers and a > b, then $[(a^2 + b^2), (a^2 - b^2), (2ab)]$ is Pythagorean triplet.

$$\therefore (a^2 + b^2)^2 = a^4 + 2a^2b^2 + b^4 \qquad (I)$$

$$(a^2 - b^2) = a^4 - 2a^2b^2 + b^4 \qquad (II)$$

$$(2ab)^2 = 4a^2b^2 \qquad (III)$$

$$\therefore by (I), (II) and (III), (a^2 + b^2)^2 = (a^2 - b^2)^2 + (2ab)^2$$

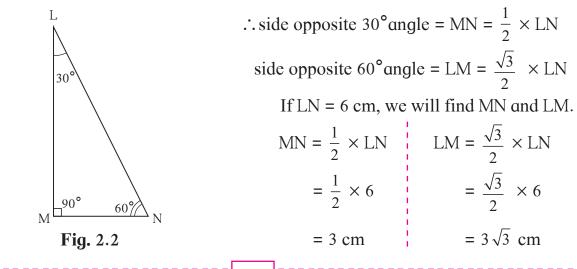
$$\therefore [(a^2 + b^2), (a^2 - b^2), (2ab)] \text{ is Pythagorean Triplet.}$$
This formula can be used to get various Pythagorean triplets.
For example, if we take $a = 5$ and $b = 3$,
 $a^2 + b^2 = 34, a^2 - b^2 = 16, 2ab = 30.$
Check that (34, 16, 30) is a Pythagorean triplet.
Assign different values to a and b and obtain 5 Pythagorean triplet.

Last year we have studied the properties of right angled triangle with the angles $30^{\circ} - 60^{\circ} - 90^{\circ}$ and $45^{\circ} - 45^{\circ} - 90^{\circ}$.

(I)Property of $30^{\circ}-60^{\circ}-90^{\circ}$ triangle.

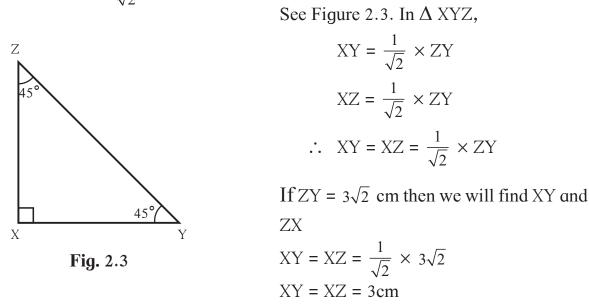
If acute angles of a right angled triangle are 30° and 60°, then the side opposite 30° angle is half of the hypotenuse and the side opposite to 60° angle is $\frac{\sqrt{3}}{2}$ times the hypotenuse.

See figure 2.2. In Δ LMN, \angle L = 30°, \angle N = 60°, \angle M = 90°



(II) Property of $45^\circ - 45^\circ - 90^\circ$

If the acute angles of a right angled triangle are 45° and 45°, then each of the perpendicular sides is $\frac{1}{\sqrt{2}}$ times the hypotenuse.

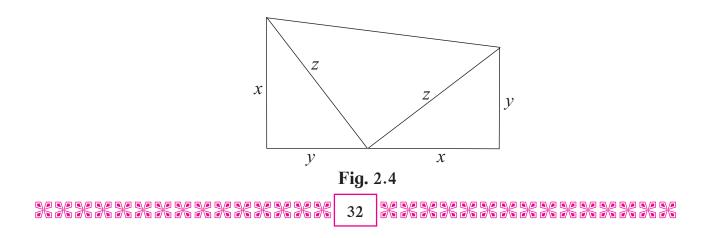


In 7th standard we have studied theorem of Pythagoras using areas of four right angled triangles and a square. We can prove the theorem by an alternative method.

Activity:

Take two congruent right angled triangles. Take another isosceles right angled triangle whose congruent sides are equal to the hypotenuse of the two congruent right angled triangles. Join these triangles to form a trapezium

Area of the trapezium = $\frac{1}{2}$ × (sum of the lengths of parallel sides) × height Using this formula, equating the area of trapezium with the sum of areas of the three right angled triangles we can prove the theorem of Pythagoras.

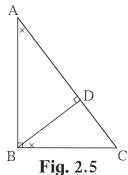


Now we will give the proof of Pythagoras theorem based on properties of similar triangles. For this, we will study right angled similar triangles.

Similarity and right angled triangle

Theorem : In a right angled triangle, if the altitude is drawn to the hypotenuse, then the two triangles formed are similar to the original triangle and to each other.

Given : In \triangle ABC, \angle ABC = 90°, seg BD \perp seg AC, A-D-C To prove: \triangle ADB ~ \triangle ABC \triangle BDC ~ \triangle ABC \triangle ADB ~ \triangle BDC



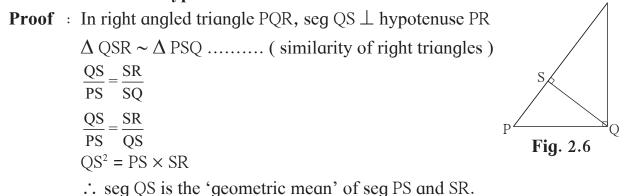
Proof : In \triangle ADB and \triangle ABCIn \triangle BDC and \triangle ABC \angle DAB \cong \angle BAC ... (common angle) \angle BCD \cong \angle ACB (common angle) \angle ADB \cong \angle ABC ... (each 90°) \angle BDC \cong \angle ABC (each 90°) \triangle ADB ~ \triangle ABC (AA test)... (I) \triangle BDC ~ \triangle ABC (AA test) ... (II)

 $\therefore \Delta$ ADB ~ Δ BDC from (I) and (II)(III)

: from (I), (II) and (III), Δ ADB ~ Δ BDC ~ Δ ABC(transitivity)

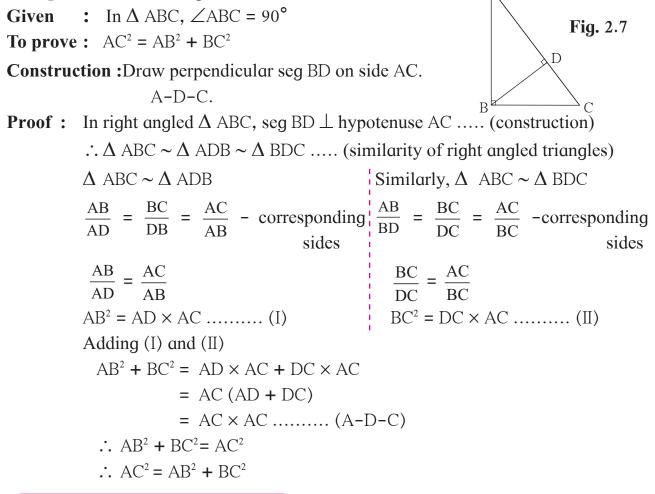
Theorem of geometric mean

In a right angled triangle, the perpendicular segment to the hypotenuse from the opposite vertex, is the geometric mean of the segments into which the hypotenuse is divided.



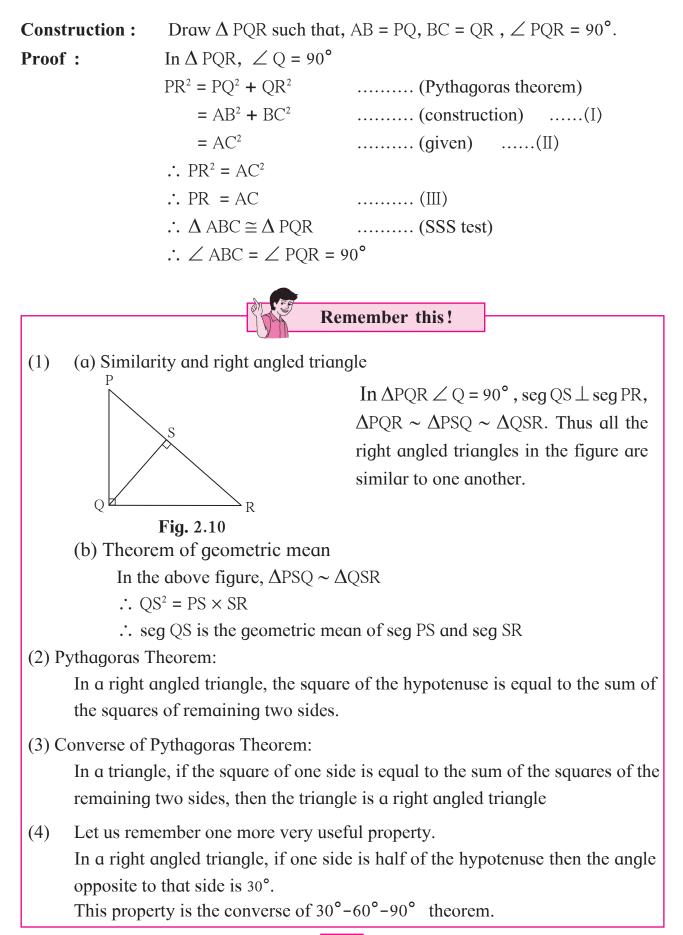
Pythagoras Theorem

In a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of remaining two sides. \bigwedge^A



Converse of Pythagoras theorem

In a triangle if the square of one side is equal to the sum of the squares of the remaining two sides, then the triangle is a right angled triangle.



Ex. (1) See fig 2.11. In \triangle ABC, \angle B= 90°, \angle A= 30°, AC=14, then find AB and BC **Solution :** In \triangle ABC,

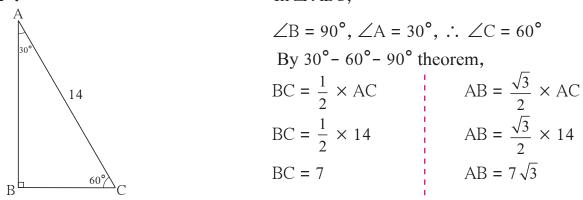
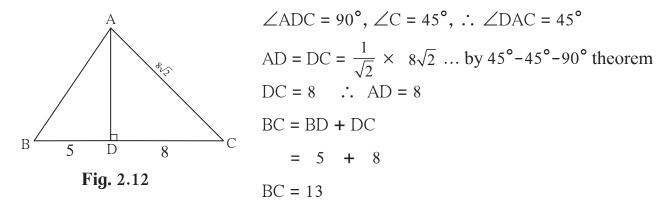
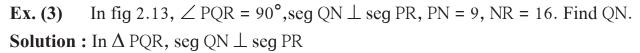


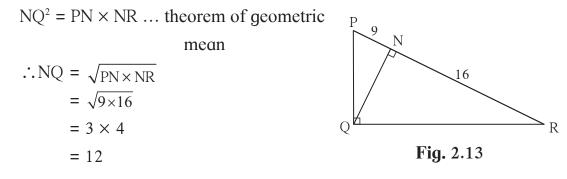
Fig. 2.11

Ex. (2) See fig 2.12, In \triangle ABC, seg AD \perp seg BC, \angle C = 45°, BD = 5 and AC = $8\sqrt{2}$ then find AD and BC.

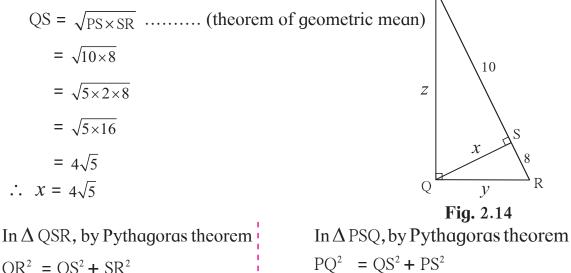
Solution : In \triangle ADC







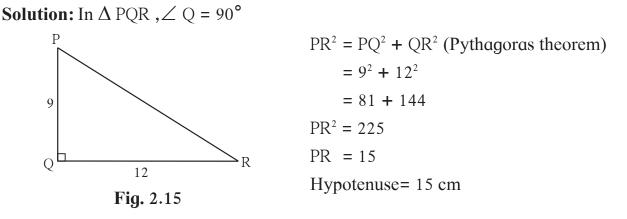
Ex. (4) See figure 2.14. In \triangle PQR, \angle PQR = 90°, seg QS \perp seg PR then find x, y, z. **Solution :** In \triangle PQR, \angle PQR = 90°, seg QS \perp seg PR



 $QR^{2} = QS^{2} + SR^{2}$ = $(4\sqrt{5})^{2} + 8^{2}$ = $16 \times 5 + 64$ = 80 + 64= 144∴ QR = 12 $PQ^{2} = QS^{2} + PS^{2}$ = $(4\sqrt{5})^{2} + 10^{2}$ = $16 \times 5 + 100$ = 80 + 100= 180= 36×5 ∴ PQ = $6\sqrt{5}$

Hence $x = 4\sqrt{5}, y = 12, z = 6\sqrt{5}$

Ex. (5) In the right angled triangle, sides making right angle are 9 cm and 12 cm.Find the length of the hypotenuse



- **Ex. (6)** In Δ LMN , l = 5, m = 13, n = 12. State whether Δ LMN is a right angled triangle or not.
- Solution : l = 5, m = 13, n = 12 $l^2 = 25, m^2 = 169, n^2 = 144$ $\therefore m^2 = l^2 + n^2$

 \therefore by converse of Pythagoras theorem Δ LMN is a right angled triangle.

Ex. (7) See fig 2.16. In \triangle ABC, seg AD \perp seg BC. Prove that: AB² + CD² = BD² + AC²

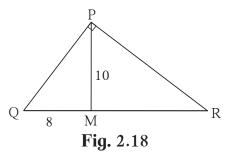
Solution : According to Pythagoras theorem, in \triangle ADC $AC^2 = AD^2 + CD^2$ $\therefore AD^2 = AC^2 - CD^2 \dots (I)$ $\ln \triangle ADB$ $AB^2 = AD^2 + BD^2$ $\therefore AD^2 = AB^2 - BD^2 \dots (II)$ $\therefore AB^2 - BD^2 = AC^2 - CD^2 \dots \text{from I and II}$ Fig. 2.16 $\therefore AB^2 + CD^2 = AC^2 + BD^2$

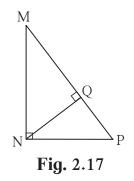
Practice set 2.1

1. Identify, with reason, which of the following are Pythagorean triplets.

(i)(3, 5, 4)(ii)(4, 9, 12)(iii)(5, 12, 13)(iv) (24, 70, 74)(v)(10, 24, 27)(vi)(11, 60, 61)

2. In figure 2.17, \angle MNP = 90°, seg NQ \perp seg MP, MQ = 9, QP = 4, find NQ.





С

In figure 2.18, ∠ QPR = 90°,
seg PM ⊥ seg QR and Q-M-R,
PM = 10, QM = 8, find QR.

4. See figure 2.19. Find RP and PS using the information given in Δ PSR.

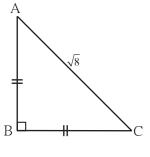
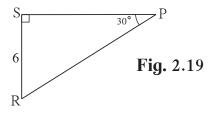
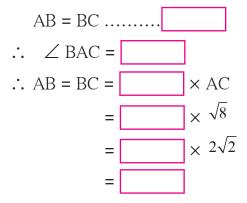


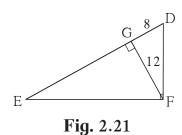
Fig. 2.20



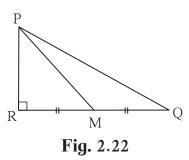
 For finding AB and BC with the help of information given in figure 2.20, complete following activity.



- 6. Find the side and perimeter of a square whose diagonal is 10 cm.
- 7. In figure 2.21, \angle DFE = 90°, FG \perp ED, If GD = 8, FG = 12, find (1) EG (2) FD and (3) EF



- 8. Find the diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.
- 9^{*}. In the figure 2.22, M is the midpoint of QR. \angle PRQ = 90°. Prove that, PQ² = 4PM² 3PR²

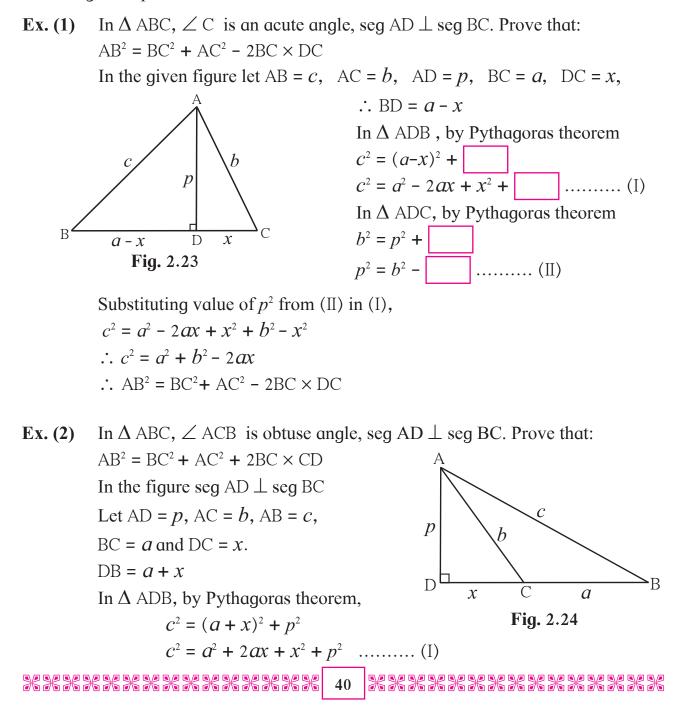


10*. Walls of two buildings on either side of a street are parellel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street, its top touches the window of the other building at a height 4.2 m. Find the width of the street.

Application of Pythagoras theorem

In Pythagoras theorem, the relation between hypotenuse and sides making right angle i.e. the relation between side opposite to right angle and the remaining two sides is given.

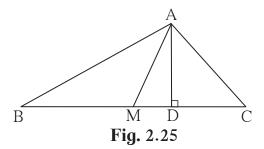
In a triangle, relation between the side opposite to acute angle and remaining two sides and relation of the side opposite to obtuse angle with remaining two sides can be determined with the help of Pythagoras theorem. Study these relations from the following examples.



Similarly, in \triangle ADC $b^2 = x^2 + p^2$ $\therefore p^2 = b^2 - x^2$ (II) \therefore substituting the value of p^2 from (II) in (I) $\therefore c^2 = a^2 + 2ax + b^2$ $\therefore AB^2 = BC^2 + AC^2 + 2BC \times CD$

Apollonius theorem

In \triangle ABC, if M is the midpoint of side BC, then AB² + AC² = 2AM² + 2BM²



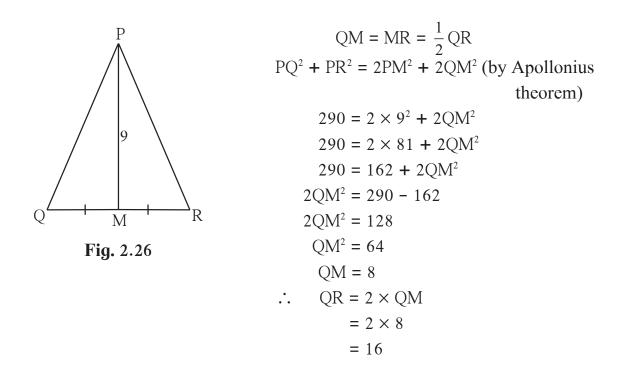
Given :In ∆ ABC, M is the midpoint of side BC.
To prove : AB² + AC² = 2AM² + 2BM²
Construction: Draw seg AD ⊥ seg BC

Proof : If seg AM is not perpendicular to seg BC then out of ∠ AMB and ∠ AMC one is obtuse angle and the other is acute angle
In the figure, ∠ AMB is obtuse angle and ∠ AMC is acute angle.
From examples (1) and (2) above,
AB² = AM² + MB² + 2BM × MD (I)
and AC² = AM² + MC² - 2MC × MD
∴ AC² = AM² + MB² - 2BM × MD (∵ BM = MC)(II)
∴ adding (I) and (II)
AB² + AC² = 2AM² + 2BM²
Write the proof yourself if seg AM ⊥ seg BC.
From this example we can see the relation among the sides and medians of a triangle.
This is known as Apollonius theorem.

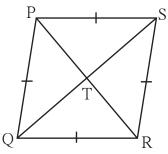
- Ex. (1) In the figure 2.26, seg PM is a median of Δ PQR. PM = 9 and PQ² + PR² = 290, then find QR.
- $\textbf{Solution}~:~ \mbox{In}~\Delta\mbox{PQR}$, seg PM is a median.

M is the midpoint of seg QR.

\$XXXXXXXXXXXX 41 XXXXXXXXXXXXXXXXXXXX



Ex. (2) Prove that, the sum of the squares of the diagonals of a rhombus is equal to the sum of the squares of the sides.



Given : □ PQRS is a rhombus. Diagonals PR and SQ intersect each other at point T
To prove : PS² + SR² + QR² + PQ² = PR² + QS²

Fig. 2.27

Proof : Diagonals of a rhombus bisect each other .

:. by Apollonius' theorem,

$$PQ^{2} + PS^{2} = 2PT^{2} + 2QT^{2} \dots (I)$$

 $QR^{2} + SR^{2} = 2RT^{2} + 2QT^{2} \dots (II)$
... adding (I) and (II) ,
 $PQ^{2} + PS^{2} + QR^{2} + SR^{2} = 2(PT^{2} + RT^{2}) + 4QT^{2}$
 $= 2(PT^{2} + PT^{2}) + 4QT^{2} \dots (RT = PT)$
 $= 4PT^{2} + 4QT^{2}$
 $= (2PT)^{2} + (2QT)^{2}$
 $= PR^{2} + QS^{2}$

(The above proof can be written using Pythagoras theorem also.)

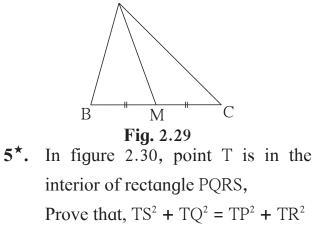
Practice set 2.2

- 1. In Δ PQR, point S is the midpoint of side QR.If PQ = 11,PR = 17, PS =13, find QR.
- 2. In \triangle ABC, AB = 10, AC = 7, BC = 9 then find the length of the median drawn from point C to side AB
- 3. In the figure 2.28 seg PS is the median of Δ PQR and PT \perp QR. Prove that,

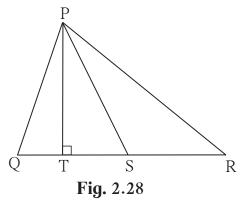
묆

(1) $PR^2 = PS^2 + QR \times ST + \left(\frac{QR}{2}\right)^2$

ii)
$$PQ^2 = PS^2 - QR \times ST + \left(\frac{QR}{2}\right)^2$$



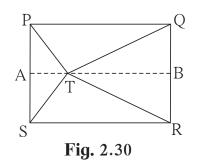
(As shown in the figure, draw seg AB || side SR and A-T-B)



4. In Δ ABC, point M is the midpoint of side BC.

If, $AB^2 + AC^2 = 290 \text{ cm}^2$,

AM = 8 cm, find BC.



1. Some questions and their alternative answers are given. Select the correct alternative.

(1) Out of the following which is the Pythagorean triplet?

Acceleration of the set 2 Acceleration of th

(A) (1, 5, 10) (B) (3, 4, 5) (C) (2, 2, 2) (D) (5, 5, 2)

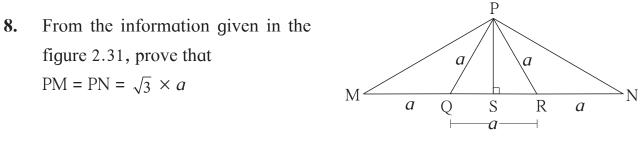
(2) In a right angled triangle, if sum of the squares of the sides making right angle is 169 then what is the length of the hypotenuse?
(A) 15
(B) 13
(C) 5
(D) 12

- (3) Out of the dates given below which date constitutes a Pythagorean triplet ?
 (A) 15/08/17 (B) 16/08/16 (C) 3/5/17 (D) 4/9/15
- (4) If a, b, c are sides of a triangle and a² + b² = c², name the type of triangle.
 (A) Obtuse angled triangle
 (B) Acute angled triangle
 (C) Right angled triangle
 (D) Equilateral triangle
- (5) Find perimeter of a square if its diagonal is $10\sqrt{2}$ cm. (A)10 cm (B) $40\sqrt{2}$ cm (C) 20 cm (D) 40 cm
- (6) Altitude on the hypotenuse of a right angled triangle divides it in two parts of lengths 4 cm and 9 cm. Find the length of the altitude.
 - (A) 9 cm (B) 4 cm (C) 6 cm (D) $2\sqrt{6}$ cm
- (7) Height and base of a right angled triangle are 24 cm and 18 cm find the length of its hypotenus
 - (A) 24 cm (B) 30 cm (C) 15 cm (D) 18 cm
- (8) In \triangle ABC, AB = $6\sqrt{3}$ cm, AC = 12 cm, BC = 6 cm. Find measure of \angle A. (A) 30° (B) 60° (C) 90° (D) 45°

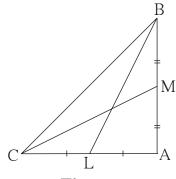
2. Solve the following examples.

- (1) Find the height of an equilateral triangle having side 2a.
- (2) Do sides 7 cm, 24 cm, 25 cm form a right angled triangle? Give reason.
- (3) Find the length a diagonal of a rectangle having sides 11 cm and 60cm.
- (4) Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.
- (5) A side of an isosceles right angled triangle is x. Find its hypotenuse.
- (6) In \triangle PQR; PQ = $\sqrt{8}$, QR = $\sqrt{5}$, PR = $\sqrt{3}$. Is \triangle PQR a right angled triangle ? If yes, which angle is of 90°?
- 3. In \triangle RST, \angle S = 90°, \angle T = 30°, RT = 12 cm then find RS and ST.
- 4. Find the diagonal of a rectangle whose length is 16 cm and area is 192 sq.cm.
- 5^{*}. Find the length of the side and perimeter of an equilateral triangle whose height is $\sqrt{3}$ cm.
- 6. In \triangle ABC seg AP is a median. If BC = 18, AB² + AC² = 260 Find AP.

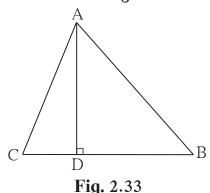
7^{*}. \triangle ABC is an equilateral triangle. Point P is on base BC such that PC = $\frac{1}{3}$ BC, if AB = 6 cm find AP.



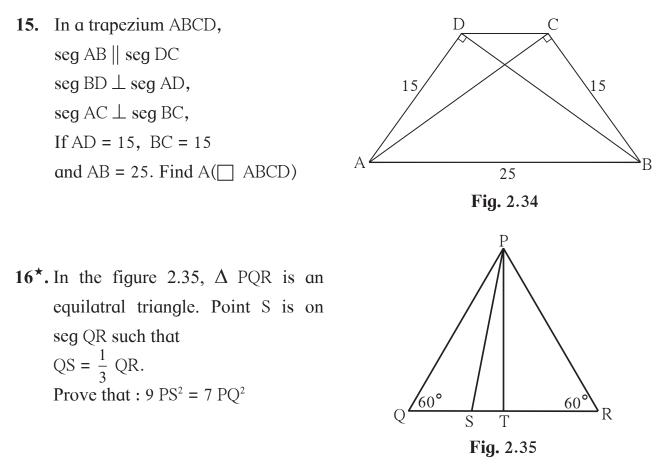
- **9.** Prove that the sum of the squares of the diagonals of a parallelogram is equal to the sum of the squares of its sides.
- 10. Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was $15\sqrt{2}$ km. Find their speed per hour.
- 11^{*}. In \triangle ABC, \angle BAC = 90°, seg BL and seg CM are medians of \triangle ABC. Then prove that: $4(BL^2 + CM^2) = 5 BC^2$



- **12.** Sum of the squares of adjacent sides of a parallelogram is 130 sq.cm and length of one of its diagonals is14 cm. Find the length of the other diagonal.
- 13. In \triangle ABC, seg AD \perp seg BC DB = 3CD. Prove that : $2AB^2 = 2AC^2 + BC^2$



14^{*}. In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm. Find the distance between the vertex opposite the base and the centroid.



- 17^{*}. Seg PM is a median of Δ PQR. If PQ = 40, PR = 42 and PM = 29, find QR.
- 18. Seg AM is a median of Δ ABC. If AB = 22, AC = 34, BC = 24, find AM

ICT Tools or Links

Obtain information on 'the life of Pythagoras' from the internet. Prepare a slide show.

