गणित MCQ Chapter 12 Class 10 Ganit वृत्तों से संबंध्ति क्षेत्रापफल UP Board 1. निम्न आकृति को क्या कहते है। वृत वर्गआयत त्रिभुजQuestion 1 of 182. निम्न आकृति में OA क्या हैं ? व्यास त्रिज्या जीवा चापQuestion 2 of 183. वृत का क्षेत्रफल निकालने का सूत्र क्या है ? π\( r^2 \) 2πrπr 2\( r^2 \)Question 3 of 184. वृत की परिधि ज्ञात करने का सूत्र क्या है ? π\( r^2 \) 2πr πr2\( r^2 \)Question 4 of 185. एक वृताकार खेत पर रू० 24 प्रति मीटर की दर से बाड़ लगाने का व्यय रू० 5280 है \( 3580m^2 \) \( 2825m^2 \) \( 1950m^2 \)\( 3850m^2 \)Question 5 of 186. दो वृतों की त्रिज्याएँ क्रमशः 19cm और 9cm हैं। उस वृत की त्रिज्या ज्ञात कीजिए जिसकी परिधि इन दोनों वृतों की परिधियों के योग के बराबर है।32cm 28cm 30cm 25cmQuestion 6 of 187. एक वृताकार क्षेत्र जिसकी त्रिज्या 21m है, उस का क्षेत्रफल ज्ञात करें। \( 1386m^2 \) \( 1350m^2 \) \( 1284m^2 \) \( 1180m^2 \)Question 7 of 188. एक वृत जिसकी त्रिज्या 14cm है उसकी परिधि ज्ञात करो। 90cm 88cm 66cm 84cmQuestion 8 of 189. दो वृतों की त्रिज्याएँ कमशः 8cm और 6cm हैं। उस वृत की त्रिज्या ज्ञात कीजिए जिसका क्षेत्रफल इन दोनों वृतों के क्षेत्रफलों के योग के बराबर है।8cm 12cm 10cm 11cmQuestion 9 of 1810. किसी कार के प्रत्येक पहिए का व्यास 80cm है। यदि यह कार 66km प्रति घंटे की चाल से चल रही है, तो 10 मिनट में प्रत्येक पहिया कितने चक्कर लगाता है। 4375 40504260 4570Question 10 of 1811. यदि एक वृत का परिमाप और क्षेत्रफल संख्यात्मक रूप से बराबर है, तो उस वृत की त्रिज्या कितनी है ? 6 मात्रक 4 मात्रक 2 मात्रक 7 मात्रकQuestion 11 of 1812. निम्न आकृति में OAPB क्या है ? दीर्घ त्रिज्याखंड लघु त्रिज्याखंड दीर्घ वृतखंड लघु वृतखंडQuestion 12 of 1813. निम्न आकृति में OAQB क्या है ? दीर्घ त्रिज्याखंड लघु त्रिज्याखंड दीर्घ वृतखंड लघु वृतखंडQuestion 13 of 1814. निम्न आकृति में ABP क्या है ? दीर्घ त्रिज्याखंड लघु त्रिज्याखंड दीर्घ वृतखंड लघु वृतखंडQuestion 14 of 1815. निम्न आकृति में AQB क्या है ? दीर्घ त्रिज्याखंड लघु त्रिज्याखंड दीर्घ वृतखंड लघु वृतखंडQuestion 15 of 1816. त्रिज्याखंड का क्षेत्रफल किस सूत्र द्धारा ज्ञात करते है ? \( \frac{θ}{360} \) x πr \( \frac{θ}{360} \) x \( πr^2 \) \( \frac{θ}{360} \) x 2πr \( \frac{θ}{360} \) x \( \frac{πr}{2} \)Question 16 of 1817. त्रिज्याखंड के संगत चाप की लंबाई किस सूत्र द्धारा ज्ञात करते है ? \( \frac{θ}{360} \) x πr \( \frac{θ}{360} \) x \( πr^2 \) \( \frac{θ}{360} \) x 2πr \( \frac{θ}{360} \) x \( \frac{πr}{2} \)Question 17 of 1818. त्रिज्या 4cm वाले एक वृत के त्रिज्याखंड का क्षेत्रफल ज्ञात कीजिए, जिसका कोण 30° है। \( 3.20cm^2 \) \( 4.19cm^2 \) \( 5.15cm^2 \) \( 2.65cm^2 \)Question 18 of 18 Loading...
Leave a Reply